Unramified quaternion extensions of quadratic number fields
Journal de théorie des nombres de Bordeaux (1997)
- Volume: 9, Issue: 1, page 51-68
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLemmermeyer, Franz. "Unramified quaternion extensions of quadratic number fields." Journal de théorie des nombres de Bordeaux 9.1 (1997): 51-68. <http://eudml.org/doc/248015>.
@article{Lemmermeyer1997,
abstract = {Classical results of Rédei, Reichardt and Scholz show that unramified cyclic quartic extensions of quadratic number fields $k$ correspond to certain factorizations of its discriminant disc $k$. In this paper we extend their results to unramified quaternion extensions of $k$ which are normal over $\mathbb \{Q\}$, and show how to construct them explicitly.},
author = {Lemmermeyer, Franz},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {unramified quaternion extensions; number fields; unramified dihedral extensions of quadratic number fields},
language = {eng},
number = {1},
pages = {51-68},
publisher = {Université Bordeaux I},
title = {Unramified quaternion extensions of quadratic number fields},
url = {http://eudml.org/doc/248015},
volume = {9},
year = {1997},
}
TY - JOUR
AU - Lemmermeyer, Franz
TI - Unramified quaternion extensions of quadratic number fields
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 1
SP - 51
EP - 68
AB - Classical results of Rédei, Reichardt and Scholz show that unramified cyclic quartic extensions of quadratic number fields $k$ correspond to certain factorizations of its discriminant disc $k$. In this paper we extend their results to unramified quaternion extensions of $k$ which are normal over $\mathbb {Q}$, and show how to construct them explicitly.
LA - eng
KW - unramified quaternion extensions; number fields; unramified dihedral extensions of quadratic number fields
UR - http://eudml.org/doc/248015
ER -
References
top- [1] C. Bachoc, S.-H. Kwon, Sur les extensions de groupe de Galois Ã4, Acta Arith.62 (1992), 1-10. Zbl0784.11051MR1179006
- [2] Ph. Cassou-Noguès, A. Jehanne, Parité du nombre de classes des S4extensions de Q et courbes elliptiques, J. Number Theory57 (1996), 366-384 Zbl0858.11058MR1382757
- [3] H. Cohn, A Classical Invitation to Algebraic Numbers and Class Fields, Springer Verlag1978. Zbl0395.12001MR506156
- [4] H. Cohn, Quaternion compositum genus, J. Number Theory11 (1979), 399-411 Zbl0409.12002MR544264
- [5] P. Damey, J. Martinet, Plongement d'une extension quadratique dans une extension quaternionienne, J. Reine Angew. Math.262/263 (1973), 323-338. Zbl0297.12010MR330104
- [6] R. Dedekind, Konstruktion von Quaternionenkörpern, Ges. Werke II, Nachlaß, Braunschweig1931, 376-384.
- [7] A. Fröhlich, Galois Module Structure of Algebraic Integers, Ergebnisse der Mathematik, Springer VerlagHeidelberg, 1983 Zbl0501.12012MR717033
- [8] G. Fujisaki, An elementary construction of Galois quaternionic extensions, Proc. Japan Acad.66 (1990), 80-83. Zbl0707.11077MR1051598
- [9] P. Furtwängler, Über das Verhalten der Ideale des Grundkörpers im Klassenkörper, Monatsh. Math. Phys.27 (1916), 1-15. Zbl46.0246.01MR1548760JFM46.0246.01
- [10] H.G. Grundman, T.L. Smith, J.R. Swallow, Groups of order 16 as Galois groups, Expo. Math.13 (1995), 289-319. Zbl0838.12004MR1358210
- [11] M. Hall, J.K. Senior, The groups of order 2n (n ≤ 6), Macmillan, New York1964. Zbl0192.11701
- [12] W. Hettkamp, Quadratischer Restcharakter von Grundeinheiten und 2-Klassengruppen quadratischer Zahlkörper, Diss. Univ. Münster, 1981
- [13] M. Horie, On central extensions of elementary abelian fields, J. Number Theory36 (1990), 95-107. Zbl0722.11058MR1068676
- [14] A. Jehanne, Sur les extensions de Q à groupe de Galois S4 et S4, Acta Arith.70 (1995), 259-276. Zbl0829.11059MR1316479
- [15] C.U. Jensen, N. Yui, Quaternion extensions, Algebraic Geometry and CommutativeAlgebra (1987), 155-182. Zbl0691.12011MR977759
- [16] I. Kiming, Explicit classifications of some 2-extensions of a field of characteristic different from 2, Can. J. Math.42 (1990), 825-855. Zbl0725.12004MR1080998
- [17] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94, J. Number Theory8 (1976), 271-279. Zbl0334.12019MR417128
- [18] H. Koch, Über den 2-Klassenkörperturm eines quadratischen Zahlkörpers, J. Reine Angew. Math.214/215 (1963), 201-206 Zbl0123.03904MR164945
- [19] S. Lang, Algebra, third edition, Addison-Wesley1993. Zbl0848.13001
- [20] A. Ledet, On 2-groups as Galois groups, Canad. J. Math.47 (1995), no. 6, 1253-1273. Zbl0849.12006MR1370517
- [21] F. Lemmermeyer, Die Konstruktion von Klassenkörpern, Diss. Univ.Heidelberg1995. Zbl0956.11515
- [22] F. Lemmermeyer, Class Field Towers, monograph, in preparation.
- [23] S. Louboutin, Calcul des nombres de classes relatifs: application aux corps quaternioniques a multiplication complexe, C. R. Acad. Sci. Paris317 (1993), 643-646. Zbl0795.11059MR1245090
- [24] S. Louboutin, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc. (1996) Zbl0861.11064MR1405052
- [25] S. Louboutin, R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith.67 (1994), 47-62. Zbl0809.11069MR1292520
- [26] S. Louboutin, R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, preprint 1996 Zbl0891.11054MR1616805
- [27] J. Martinet, Sur les extensions à groupe de Galois quaternionien, C. R. Acad. Sci. Paris274 (1972), 933-935. Zbl0235.12005MR299593
- [28] J. Martinet, H8, Algebraic Number Fields: L-functions and Galois Properties (A. Fröhlich, ed.), 525-538, Acadenic PressNew York1977 Zbl0359.12014MR447187
- [29] J. Minác, T.J. Smith, A characterization of C-fields via Galois groups, J. Algebra137 (1991), 1-11 Zbl0726.12002MR1090208
- [30] L. RédeiArithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math.171 (1934), 55-60 Zbl0009.05101
- [31] L. Rédei, H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math.170 (1934), 69-74 Zbl0007.39602JFM59.0192.01
- [32] H. Reichardt, Über Normalkörper mit Quaternionengruppe, Math. Z.41 (1936), 218-222. Zbl0014.00603MR1545614JFM62.0169.02
- [33] E. Rosenblüth, Die arithmetische Theorie und die Konstruktion der Quaternionenkörper auf klassenkörpertheoretischer Grundlage, Monatsh. Math. Phys.41 (1934), 85-125. Zbl60.0126.01MR1550302JFM60.0126.01
- [34] T.J. Smith, Extra-special groups of order 32 as Galois groups, Can. J. Math.46 (1994), 886-896 Zbl0810.12004MR1289066
- [35] A.D. Thomas, G.V. Wood, Group Tables, Shiva Publishing Ltd, Kent, UK 1980 Zbl0441.20001MR572793
- [36] T.P. Vaughan, Constructing quaternionic fields, Glasgow Math. J.34 (1992), 43-54. Zbl0746.12003MR1145631
- [37] E. Witt, Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung pf, J. Reine Angew. Math.174 (1936), 237-245. Zbl0013.19601JFM62.0110.02
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.