Unramified quaternion extensions of quadratic number fields

Franz Lemmermeyer

Journal de théorie des nombres de Bordeaux (1997)

  • Volume: 9, Issue: 1, page 51-68
  • ISSN: 1246-7405

Abstract

top
Classical results of Rédei, Reichardt and Scholz show that unramified cyclic quartic extensions of quadratic number fields k correspond to certain factorizations of its discriminant disc k . In this paper we extend their results to unramified quaternion extensions of k which are normal over , and show how to construct them explicitly.

How to cite

top

Lemmermeyer, Franz. "Unramified quaternion extensions of quadratic number fields." Journal de théorie des nombres de Bordeaux 9.1 (1997): 51-68. <http://eudml.org/doc/248015>.

@article{Lemmermeyer1997,
abstract = {Classical results of Rédei, Reichardt and Scholz show that unramified cyclic quartic extensions of quadratic number fields $k$ correspond to certain factorizations of its discriminant disc $k$. In this paper we extend their results to unramified quaternion extensions of $k$ which are normal over $\mathbb \{Q\}$, and show how to construct them explicitly.},
author = {Lemmermeyer, Franz},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {unramified quaternion extensions; number fields; unramified dihedral extensions of quadratic number fields},
language = {eng},
number = {1},
pages = {51-68},
publisher = {Université Bordeaux I},
title = {Unramified quaternion extensions of quadratic number fields},
url = {http://eudml.org/doc/248015},
volume = {9},
year = {1997},
}

TY - JOUR
AU - Lemmermeyer, Franz
TI - Unramified quaternion extensions of quadratic number fields
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 1
SP - 51
EP - 68
AB - Classical results of Rédei, Reichardt and Scholz show that unramified cyclic quartic extensions of quadratic number fields $k$ correspond to certain factorizations of its discriminant disc $k$. In this paper we extend their results to unramified quaternion extensions of $k$ which are normal over $\mathbb {Q}$, and show how to construct them explicitly.
LA - eng
KW - unramified quaternion extensions; number fields; unramified dihedral extensions of quadratic number fields
UR - http://eudml.org/doc/248015
ER -

References

top
  1. [1] C. Bachoc, S.-H. Kwon, Sur les extensions de groupe de Galois Ã4, Acta Arith.62 (1992), 1-10. Zbl0784.11051MR1179006
  2. [2] Ph. Cassou-Noguès, A. Jehanne, Parité du nombre de classes des S4extensions de Q et courbes elliptiques, J. Number Theory57 (1996), 366-384 Zbl0858.11058MR1382757
  3. [3] H. Cohn, A Classical Invitation to Algebraic Numbers and Class Fields, Springer Verlag1978. Zbl0395.12001MR506156
  4. [4] H. Cohn, Quaternion compositum genus, J. Number Theory11 (1979), 399-411 Zbl0409.12002MR544264
  5. [5] P. Damey, J. Martinet, Plongement d'une extension quadratique dans une extension quaternionienne, J. Reine Angew. Math.262/263 (1973), 323-338. Zbl0297.12010MR330104
  6. [6] R. Dedekind, Konstruktion von Quaternionenkörpern, Ges. Werke II, Nachlaß, Braunschweig1931, 376-384. 
  7. [7] A. Fröhlich, Galois Module Structure of Algebraic Integers, Ergebnisse der Mathematik, Springer VerlagHeidelberg, 1983 Zbl0501.12012MR717033
  8. [8] G. Fujisaki, An elementary construction of Galois quaternionic extensions, Proc. Japan Acad.66 (1990), 80-83. Zbl0707.11077MR1051598
  9. [9] P. Furtwängler, Über das Verhalten der Ideale des Grundkörpers im Klassenkörper, Monatsh. Math. Phys.27 (1916), 1-15. Zbl46.0246.01MR1548760JFM46.0246.01
  10. [10] H.G. Grundman, T.L. Smith, J.R. Swallow, Groups of order 16 as Galois groups, Expo. Math.13 (1995), 289-319. Zbl0838.12004MR1358210
  11. [11] M. Hall, J.K. Senior, The groups of order 2n (n ≤ 6), Macmillan, New York1964. Zbl0192.11701
  12. [12] W. Hettkamp, Quadratischer Restcharakter von Grundeinheiten und 2-Klassengruppen quadratischer Zahlkörper, Diss. Univ. Münster, 1981 
  13. [13] M. Horie, On central extensions of elementary abelian fields, J. Number Theory36 (1990), 95-107. Zbl0722.11058MR1068676
  14. [14] A. Jehanne, Sur les extensions de Q à groupe de Galois S4 et S4, Acta Arith.70 (1995), 259-276. Zbl0829.11059MR1316479
  15. [15] C.U. Jensen, N. Yui, Quaternion extensions, Algebraic Geometry and CommutativeAlgebra (1987), 155-182. Zbl0691.12011MR977759
  16. [16] I. Kiming, Explicit classifications of some 2-extensions of a field of characteristic different from 2, Can. J. Math.42 (1990), 825-855. Zbl0725.12004MR1080998
  17. [17] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94, J. Number Theory8 (1976), 271-279. Zbl0334.12019MR417128
  18. [18] H. Koch, Über den 2-Klassenkörperturm eines quadratischen Zahlkörpers, J. Reine Angew. Math.214/215 (1963), 201-206 Zbl0123.03904MR164945
  19. [19] S. Lang, Algebra, third edition, Addison-Wesley1993. Zbl0848.13001
  20. [20] A. Ledet, On 2-groups as Galois groups, Canad. J. Math.47 (1995), no. 6, 1253-1273. Zbl0849.12006MR1370517
  21. [21] F. Lemmermeyer, Die Konstruktion von Klassenkörpern, Diss. Univ.Heidelberg1995. Zbl0956.11515
  22. [22] F. Lemmermeyer, Class Field Towers, monograph, in preparation. 
  23. [23] S. Louboutin, Calcul des nombres de classes relatifs: application aux corps quaternioniques a multiplication complexe, C. R. Acad. Sci. Paris317 (1993), 643-646. Zbl0795.11059MR1245090
  24. [24] S. Louboutin, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc. (1996) Zbl0861.11064MR1405052
  25. [25] S. Louboutin, R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith.67 (1994), 47-62. Zbl0809.11069MR1292520
  26. [26] S. Louboutin, R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, preprint 1996 Zbl0891.11054MR1616805
  27. [27] J. Martinet, Sur les extensions à groupe de Galois quaternionien, C. R. Acad. Sci. Paris274 (1972), 933-935. Zbl0235.12005MR299593
  28. [28] J. Martinet, H8, Algebraic Number Fields: L-functions and Galois Properties (A. Fröhlich, ed.), 525-538, Acadenic PressNew York1977 Zbl0359.12014MR447187
  29. [29] J. Minác, T.J. Smith, A characterization of C-fields via Galois groups, J. Algebra137 (1991), 1-11 Zbl0726.12002MR1090208
  30. [30] L. RédeiArithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math.171 (1934), 55-60 Zbl0009.05101
  31. [31] L. Rédei, H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math.170 (1934), 69-74 Zbl0007.39602JFM59.0192.01
  32. [32] H. Reichardt, Über Normalkörper mit Quaternionengruppe, Math. Z.41 (1936), 218-222. Zbl0014.00603MR1545614JFM62.0169.02
  33. [33] E. Rosenblüth, Die arithmetische Theorie und die Konstruktion der Quaternionenkörper auf klassenkörpertheoretischer Grundlage, Monatsh. Math. Phys.41 (1934), 85-125. Zbl60.0126.01MR1550302JFM60.0126.01
  34. [34] T.J. Smith, Extra-special groups of order 32 as Galois groups, Can. J. Math.46 (1994), 886-896 Zbl0810.12004MR1289066
  35. [35] A.D. Thomas, G.V. Wood, Group Tables, Shiva Publishing Ltd, Kent, UK 1980 Zbl0441.20001MR572793
  36. [36] T.P. Vaughan, Constructing quaternionic fields, Glasgow Math. J.34 (1992), 43-54. Zbl0746.12003MR1145631
  37. [37] E. Witt, Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung pf, J. Reine Angew. Math.174 (1936), 237-245. Zbl0013.19601JFM62.0110.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.