Determination of the imaginary normal octic number fields with class number one which are not CM-fields

Ken Yamamura

Acta Arithmetica (1998)

  • Volume: 86, Issue: 2, page 133-147
  • ISSN: 0065-1036

How to cite

top

Ken Yamamura. "Determination of the imaginary normal octic number fields with class number one which are not CM-fields." Acta Arithmetica 86.2 (1998): 133-147. <http://eudml.org/doc/207185>.

@article{KenYamamura1998,
author = {Ken Yamamura},
journal = {Acta Arithmetica},
keywords = {class group; imaginary normal octic number fields; class number one; dihedral extensions; Hilbert class fields; ramified cyclic quartic extensions; normal octic CM-fields; relative norms},
language = {eng},
number = {2},
pages = {133-147},
title = {Determination of the imaginary normal octic number fields with class number one which are not CM-fields},
url = {http://eudml.org/doc/207185},
volume = {86},
year = {1998},
}

TY - JOUR
AU - Ken Yamamura
TI - Determination of the imaginary normal octic number fields with class number one which are not CM-fields
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 2
SP - 133
EP - 147
LA - eng
KW - class group; imaginary normal octic number fields; class number one; dihedral extensions; Hilbert class fields; ramified cyclic quartic extensions; normal octic CM-fields; relative norms
UR - http://eudml.org/doc/207185
ER -

References

top
  1. [1] S. Arno, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334; MR 93b:11144. 
  2. [2] E. Brown and C. J. Parry, The imaginary bicyclic biquadratic fields with class numbers 1, J. Reine Angew. Math. 266 (1974), 118-120; MR 49 #4974. Zbl0287.12015
  3. [3] D. A. Buell, H. C. Williams and K. S. Williams, On the imaginary bicyclic biquadratic fields with class-number 2, Math. Comp. 31 (1977), 1034-1042; MR 56 #305. Zbl0379.12002
  4. [4] C. Castela, Nombre de classes d'idéaux d'une extension diédrale de degré 8 de ℚ, Séminaire de Théorie des Nombres 1977-1978, Exp. No. 5, 8 pp., CNRS, Talence, 1978; MR 81e:12006. Zbl0405.12010
  5. [5] C. Castela, Nombre de classes d'idéaux d'une extension diédrale d'un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), 483-486; MR 80c:12012. Zbl0395.12011
  6. [6] P. E. Conner and J. Hurrelbrink, Class Number Parity, Ser. Pure Math. 8, World Sci. Publishing, Singapore, 1988; MR 90f:11092. Zbl0743.11061
  7. [7] J. Cougnard, Groupe des unités et nombre de classes de certaines extensions diédrales de degré 8 de ℚ, Théorie des Nombres, Besançon, 1983-1984, 21 pp., Publ. Math. Fac. Sci., Exp. No. 2, Besançon, Univ. Franche-Comté, Besançon, 1984; MR 87e:11126. 
  8. [8] G. Frey und W. D. Geyer, Über die Fundamentalgruppe von Körpern mit Divisorentheorie, J. Reine Angew. Math. 254 (1972), 110-122; MR 46 #7197. 
  9. [9] T. Funakura, On integral basis of pure quartic fields, Math. J. Okayama Univ. 26 (1984), 27-41; MR 86c:11089. Zbl0563.12003
  10. [10] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258; MR 18 644e. Zbl0074.03002
  11. [11] S. Louboutin, On the class number one problem for non-normal quartic CM-fields, Tôhoku Math. J. (2) 46 (1994), no. 1, 1-12; MR 94m:11130. 
  12. [12] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47-62; MR 95g:11107. Zbl0809.11069
  13. [13] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, ibid. 24 (1973//74), 529-542; MR 50 #9841. 
  14. [14] A. M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), 275-286; MR 51 #12788. Zbl0299.12010
  15. [15] C. J. Parry, Pure quartic number fields whose class numbers are even, J. Reine Angew. Math. 272 (1974), 102-112; MR 51 #436. Zbl0312.12006
  16. [16] C. J. Parry, A genus theory for quartic fields, ibid. 314 (1980), 40-71; MR 81j:12002. Zbl0421.12006
  17. [17] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, ibid. 170 (1933), 69-74. Zbl59.0192.01
  18. [18] H. M. Stark, On complex quadratic fields with class-number equal to one, Trans. Amer. Math. Soc. 122 (1966), 112-119; MR 33 #4043. Zbl0137.02401
  19. [19] O. Taussky, A remark on the class field tower, J. London Math. Soc. 12 (1937), 82-85. Zbl63.0144.03
  20. [20] K. Uchida, Class numbers of imaginary abelian number fields, I, Tôhoku Math. J. (2) 23 (1971), 97-104; MR 44 #2727. Zbl0213.06903
  21. [21] K. Uchida, Imaginary abelian number fields with class numbers one, ibid. 24 (1972), 487-499; MR 48 #269. Zbl0248.12007
  22. [22] K. Uchida, On imaginary Galois extension fields with class number one, Sûgaku 25 (1973), 172-173 (in Japanese); MR 58 #27904. 
  23. [23] T. P. Vaughan, Constructing quaternionic fields, Glasgow Math. J. 34 (1992), 43-54; MR 92m:12005. 
  24. [24] Y. Yamamoto, Divisibility by 16 of class numbers of quadratic fields whose 2-class groups are cyclic, Osaka J. Math. 21 (1984), 1-22; MR 85g:11092. 
  25. [25] K. Yamamura, The determination of the imaginary abelian number fields with class number one, Math. Comp. 62 (1994), no. 206, 899-921; MR 94g:11096. 
  26. [26] K. Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors, J. Théor. Nombres Bordeaux 9 (1997), 405-448. Zbl0905.11048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.