Determination of the imaginary normal octic number fields with class number one which are not CM-fields
Acta Arithmetica (1998)
- Volume: 86, Issue: 2, page 133-147
- ISSN: 0065-1036
Access Full Article
topHow to cite
topKen Yamamura. "Determination of the imaginary normal octic number fields with class number one which are not CM-fields." Acta Arithmetica 86.2 (1998): 133-147. <http://eudml.org/doc/207185>.
@article{KenYamamura1998,
author = {Ken Yamamura},
journal = {Acta Arithmetica},
keywords = {class group; imaginary normal octic number fields; class number one; dihedral extensions; Hilbert class fields; ramified cyclic quartic extensions; normal octic CM-fields; relative norms},
language = {eng},
number = {2},
pages = {133-147},
title = {Determination of the imaginary normal octic number fields with class number one which are not CM-fields},
url = {http://eudml.org/doc/207185},
volume = {86},
year = {1998},
}
TY - JOUR
AU - Ken Yamamura
TI - Determination of the imaginary normal octic number fields with class number one which are not CM-fields
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 2
SP - 133
EP - 147
LA - eng
KW - class group; imaginary normal octic number fields; class number one; dihedral extensions; Hilbert class fields; ramified cyclic quartic extensions; normal octic CM-fields; relative norms
UR - http://eudml.org/doc/207185
ER -
References
top- [1] S. Arno, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334; MR 93b:11144.
- [2] E. Brown and C. J. Parry, The imaginary bicyclic biquadratic fields with class numbers 1, J. Reine Angew. Math. 266 (1974), 118-120; MR 49 #4974. Zbl0287.12015
- [3] D. A. Buell, H. C. Williams and K. S. Williams, On the imaginary bicyclic biquadratic fields with class-number 2, Math. Comp. 31 (1977), 1034-1042; MR 56 #305. Zbl0379.12002
- [4] C. Castela, Nombre de classes d'idéaux d'une extension diédrale de degré 8 de ℚ, Séminaire de Théorie des Nombres 1977-1978, Exp. No. 5, 8 pp., CNRS, Talence, 1978; MR 81e:12006. Zbl0405.12010
- [5] C. Castela, Nombre de classes d'idéaux d'une extension diédrale d'un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), 483-486; MR 80c:12012. Zbl0395.12011
- [6] P. E. Conner and J. Hurrelbrink, Class Number Parity, Ser. Pure Math. 8, World Sci. Publishing, Singapore, 1988; MR 90f:11092. Zbl0743.11061
- [7] J. Cougnard, Groupe des unités et nombre de classes de certaines extensions diédrales de degré 8 de ℚ, Théorie des Nombres, Besançon, 1983-1984, 21 pp., Publ. Math. Fac. Sci., Exp. No. 2, Besançon, Univ. Franche-Comté, Besançon, 1984; MR 87e:11126.
- [8] G. Frey und W. D. Geyer, Über die Fundamentalgruppe von Körpern mit Divisorentheorie, J. Reine Angew. Math. 254 (1972), 110-122; MR 46 #7197.
- [9] T. Funakura, On integral basis of pure quartic fields, Math. J. Okayama Univ. 26 (1984), 27-41; MR 86c:11089. Zbl0563.12003
- [10] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258; MR 18 644e. Zbl0074.03002
- [11] S. Louboutin, On the class number one problem for non-normal quartic CM-fields, Tôhoku Math. J. (2) 46 (1994), no. 1, 1-12; MR 94m:11130.
- [12] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47-62; MR 95g:11107. Zbl0809.11069
- [13] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, ibid. 24 (1973//74), 529-542; MR 50 #9841.
- [14] A. M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), 275-286; MR 51 #12788. Zbl0299.12010
- [15] C. J. Parry, Pure quartic number fields whose class numbers are even, J. Reine Angew. Math. 272 (1974), 102-112; MR 51 #436. Zbl0312.12006
- [16] C. J. Parry, A genus theory for quartic fields, ibid. 314 (1980), 40-71; MR 81j:12002. Zbl0421.12006
- [17] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, ibid. 170 (1933), 69-74. Zbl59.0192.01
- [18] H. M. Stark, On complex quadratic fields with class-number equal to one, Trans. Amer. Math. Soc. 122 (1966), 112-119; MR 33 #4043. Zbl0137.02401
- [19] O. Taussky, A remark on the class field tower, J. London Math. Soc. 12 (1937), 82-85. Zbl63.0144.03
- [20] K. Uchida, Class numbers of imaginary abelian number fields, I, Tôhoku Math. J. (2) 23 (1971), 97-104; MR 44 #2727. Zbl0213.06903
- [21] K. Uchida, Imaginary abelian number fields with class numbers one, ibid. 24 (1972), 487-499; MR 48 #269. Zbl0248.12007
- [22] K. Uchida, On imaginary Galois extension fields with class number one, Sûgaku 25 (1973), 172-173 (in Japanese); MR 58 #27904.
- [23] T. P. Vaughan, Constructing quaternionic fields, Glasgow Math. J. 34 (1992), 43-54; MR 92m:12005.
- [24] Y. Yamamoto, Divisibility by 16 of class numbers of quadratic fields whose 2-class groups are cyclic, Osaka J. Math. 21 (1984), 1-22; MR 85g:11092.
- [25] K. Yamamura, The determination of the imaginary abelian number fields with class number one, Math. Comp. 62 (1994), no. 206, 899-921; MR 94g:11096.
- [26] K. Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors, J. Théor. Nombres Bordeaux 9 (1997), 405-448. Zbl0905.11048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.