Construction of the real dihedral number fields of degree 2p. Applications

Stéphane Louboutin; Young-Ho Park; Yann Lefeuvre

Acta Arithmetica (1999)

  • Volume: 89, Issue: 3, page 201-215
  • ISSN: 0065-1036

How to cite

top

Stéphane Louboutin, Young-Ho Park, and Yann Lefeuvre. "Construction of the real dihedral number fields of degree 2p. Applications." Acta Arithmetica 89.3 (1999): 201-215. <http://eudml.org/doc/207265>.

@article{StéphaneLouboutin1999,
author = {Stéphane Louboutin, Young-Ho Park, Yann Lefeuvre},
journal = {Acta Arithmetica},
keywords = {dihedral field; dihedral group; CM-field},
language = {eng},
number = {3},
pages = {201-215},
title = {Construction of the real dihedral number fields of degree 2p. Applications},
url = {http://eudml.org/doc/207265},
volume = {89},
year = {1999},
}

TY - JOUR
AU - Stéphane Louboutin
AU - Young-Ho Park
AU - Yann Lefeuvre
TI - Construction of the real dihedral number fields of degree 2p. Applications
JO - Acta Arithmetica
PY - 1999
VL - 89
IS - 3
SP - 201
EP - 215
LA - eng
KW - dihedral field; dihedral group; CM-field
UR - http://eudml.org/doc/207265
ER -

References

top
  1. [Cox] D. A. Cox, Primes of the Form x²+ny², Wiley, 1989. Zbl1275.11002
  2. [FQ] A. Fröhlich and J. Queyrut, On the functional equation of the Artin L-function for characters of real representations, Invent. Math. 20 (1973), 125-138. Zbl0256.12010
  3. [Has] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z. 31 (1930), 565-582. Zbl56.0167.02
  4. [Jan] G. Janusz, Algebraic Number Fields, Academic Press, New York, 1973. 
  5. [Lef] Y. Lefeuvre, Corps diédraux à multiplication complexe principaux, preprint, Univ. Caen, 1999, submitted. 
  6. [LL] Y. Lefeuvre and S. Louboutin, The class number one problem for the dihedral CM-fields, in: Proc. ICM 1998 satellite conference, Algebraic Number Theory and Diophantine Analysis, Graz. Zbl0958.11071
  7. [Lou] S. Louboutin, Computation of relative class numbers of CM-fields by using Hecke L-functions, Math. Comp., to appear. Zbl0931.11050
  8. [LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), 3657-3678. Zbl0893.11045
  9. [LP] S. Louboutin and Y.-H. Park, Class number problems for dicyclic CM-fields, preprint, Univ. Caen, 1998. Zbl0963.11065
  10. [Mar] J. Martinet, Sur l'arithmétique des extensions à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier (Grenoble) 19 (1969), 1-80. Zbl0165.06502
  11. [Por] J. Porusch, Die Arithmetik in Zahlkörpern, deren zugehörige Galoissche Körper spezielle metabelsche Gruppen besitzen, auf klassenkörpertheoretischer Grundlage, Math. Z. 37 (1933), 134-160. Zbl59.0945.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.