Corps diédraux à multiplication complexe principaux

Yann Lefeuvre

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 1, page 67-103
  • ISSN: 0373-0956

Abstract

top
We determine all the dihedral CM fields with relative class number one, then all of them with class number one: there are 32 such non-abelian fields with class number one. This is the first example of resolution of the class number one problem for non-abelian normal CM-fields of a given Galois group.

How to cite

top

Lefeuvre, Yann. "Corps diédraux à multiplication complexe principaux." Annales de l'institut Fourier 50.1 (2000): 67-103. <http://eudml.org/doc/75420>.

@article{Lefeuvre2000,
abstract = {Nous déterminons tous les corps diédraux à multiplication complexe de nombres de classes relatif un, puis ceux de nombre de classes un : il y a 32 tels corps non-abéliens principaux. C’est le premier exemple, dans ce cadre assez général, de résolution du problème de nombre de classes un pour les corps galoisiens à multiplication complexe avec un type de groupe de Galois non-abélien fixé.},
author = {Lefeuvre, Yann},
journal = {Annales de l'institut Fourier},
keywords = {CM-field; dihedral field; class number; relative class number; class field theory},
language = {fre},
number = {1},
pages = {67-103},
publisher = {Association des Annales de l'Institut Fourier},
title = {Corps diédraux à multiplication complexe principaux},
url = {http://eudml.org/doc/75420},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Lefeuvre, Yann
TI - Corps diédraux à multiplication complexe principaux
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 1
SP - 67
EP - 103
AB - Nous déterminons tous les corps diédraux à multiplication complexe de nombres de classes relatif un, puis ceux de nombre de classes un : il y a 32 tels corps non-abéliens principaux. C’est le premier exemple, dans ce cadre assez général, de résolution du problème de nombre de classes un pour les corps galoisiens à multiplication complexe avec un type de groupe de Galois non-abélien fixé.
LA - fre
KW - CM-field; dihedral field; class number; relative class number; class field theory
UR - http://eudml.org/doc/75420
ER -

References

top
  1. [1] H. COHEN, F. DIAZ Y DIAZ, M. OLIVIER, Computing ray class groups, conductors and discriminants, Actes du Colloque ANTS II, Talence, 1996. Zbl0898.11046
  2. [2] S. CHOWLA, Note on Dirichlet's L-functions, Acta Arith., 1 (1936), 113-114. Zbl0011.06701JFM61.0137.03
  3. [3] S. CHOWLA, M.J. DELEON, P. HARTUNG, On a hypothesis implying the non-vanishing of Dirichlet's L-series L(s,χ) for s &gt; 0, J. reine angew. Math., 262/263 (1973), 415-419. Zbl0266.10036MR48 #3895
  4. [4] A. FRÖHLICH, J. QUEYRUT, On the functional equation of the Artin L-function for characters of real representations, Invent. Math., 20 (1973), 125-138. Zbl0256.12010MR48 #253
  5. [5] H. HIDA, Elementary theory of L-functions and Eisenstein series, London Math. Soc., Student Texts, Cambridge University Press, 26 (1993). Zbl0942.11024MR94j:11044
  6. [6] J. HOFFSTEIN, Some analytic bounds for zeta functions and class numbers, Invent. Math., 55 (1979), 37-47. Zbl0474.12009MR80k:12019
  7. [7] Y. LEFEUVRE, Corps à multiplication complexe diédraux principaux, Thèse, Univ. Caen, soutenue le 28 juin 1999. 
  8. [8] Y. LEFEUVRE, S. LOUBOUTIN, The class number one problem for the dihedral CM-fields, to appear in the Proceedings of Conference on Algebraic Number Theory and Diophantine Analysis, Gras, 1998. Zbl0958.11071
  9. [9] S. LOUBOUTIN, Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc., 120 (1994), 425-434. Zbl0795.11058MR94d:11089
  10. [10] S. LOUBOUTIN, Corps quadratiques principaux à corps de classes de Hilbert principaux et à multiplication complexe, Acta Arith., 74 (1996), 121-140. Zbl0854.11058MR96m:11098
  11. [11] S. LOUBOUTIN, Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres, J. Math. Soc. Japan, 50 (1998), 57-69. Zbl1040.11081MR99a:11131
  12. [12] S. LOUBOUTIN, Upper bounds on |L(1,χ)| and applications, Canad. J. Math., 50 (1998), 795-815. Zbl0912.11046
  13. [13] S. LOUBOUTIN, Computation of relative class numbers of CM-fields by using Hecke L-functions, Math. Comp., 69 (1999), 371-393. Zbl0931.11050MR2000i:11172
  14. [14] S. LOUBOUTIN, Computation of L(0,χ) and of relative class numbers of CM-fields, Preprint Univ. Caen, 1998. Zbl0929.11065
  15. [15] S. LOUBOUTIN, R. OKAZAKI, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith., 67 (1994), 47-62. Zbl0809.11069MR95g:11107
  16. [16] S. LOUBOUTIN, R. OKAZAKI, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc., 76 (3) (1998), 523-548. Zbl0891.11054MR99c:11138
  17. [17] S. LOUBOUTIN, R. OKAZAKI, M. OLIVIER, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc., 349 (1997), 3657-3678. Zbl0893.11045MR97k:11149
  18. [18] S. LOUBOUTIN, Y.H. PARK, Y. LEFEUVRE, Construction of the real dihedral number fields of degree 2p. Applications, Acta Arith., 89 (1999), 201-215. Zbl1128.11316MR2000g:11101
  19. [19] J. MARTINET, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier Grenoble, 19, 1 (1969), 1-80. Zbl0165.06502MR41 #6820
  20. [20] A.M. ODLYZKO, Some analytic estimates of class numbers and discriminants, Invent. Math., 29 (1975), 279-286. Zbl0306.12005MR51 #12788
  21. [21] A.M. ODLYZKO, On conductors and discriminants, Algebraic number fields, Durham Symposium, 1975, A. Fröhlich, éd., Academic Press (1977), 377-407. Zbl0362.12006MR56 #11961
  22. [22] X.F. ROBLOT, Algorithmes de factorisation dans les extensions relatives et applications de la conjecture de Stark à la construction des corps de classes de rayon, Thèse, Univ. Bordeaux, 1997. 
  23. [23] L.C. WASHINGTON, Introduction to cyclotomic fields, Springer-Verlag, Graduate Texts in Mathematics 83, second edition, 1997. Zbl0966.11047MR97h:11130
  24. [24] K. YAMAMURA, The determination of the imaginary abelian number fields with class number one, Math. Comp., 62 (1994), 899-921. Zbl0798.11046MR94g:11096

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.