Harmonic properties of the sum-of-digits function for complex bases

Peter J. Grabner; Pierre Liardet

Acta Arithmetica (1999)

  • Volume: 91, Issue: 4, page 329-349
  • ISSN: 0065-1036

How to cite

top

Peter J. Grabner, and Pierre Liardet. "Harmonic properties of the sum-of-digits function for complex bases." Acta Arithmetica 91.4 (1999): 329-349. <http://eudml.org/doc/207360>.

@article{PeterJ1999,
author = {Peter J. Grabner, Pierre Liardet},
journal = {Acta Arithmetica},
keywords = {digital expansions; canonical number system; sum-of-digits function; system of numeration; dynamical system; purely singular continuous spectrum; uniform distribution; discrepancy},
language = {eng},
number = {4},
pages = {329-349},
title = {Harmonic properties of the sum-of-digits function for complex bases},
url = {http://eudml.org/doc/207360},
volume = {91},
year = {1999},
}

TY - JOUR
AU - Peter J. Grabner
AU - Pierre Liardet
TI - Harmonic properties of the sum-of-digits function for complex bases
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 4
SP - 329
EP - 349
LA - eng
KW - digital expansions; canonical number system; sum-of-digits function; system of numeration; dynamical system; purely singular continuous spectrum; uniform distribution; discrepancy
UR - http://eudml.org/doc/207360
ER -

References

top
  1. [1] W. Ambrose, Spectral resolution of groups of unitary operators, Duke Math. J. 11 (1944), 589-595. Zbl0061.25409
  2. [2] J.-P. Conze, Equirépartition et ergodicité de transformations cylindriques, Séminaire de Probabilité, Université de Rennes, 1976. 
  3. [3] J. Coquet, Power sums of digital sums, J. Number Theory 22 (1986), 161-176. Zbl0578.10009
  4. [4] J. Coquet and P. van den Bosch, A summation formula involving Fibonacci digits, ibid. 22 (1986), 139-146. 
  5. [5] H. Delange, Sur la fonction sommatoire de la fonction ``somme des chiffres'', Enseign. Math. (2) 21 (1975), 31-47. Zbl0306.10005
  6. [6] M. P. Drazin and J. S. Griffith, On the decimal representation of integers, Proc. Cambridge Philos. Soc. 48 (1952), 555-565. Zbl0047.04401
  7. [7] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, 1997. 
  8. [8] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, 1974. 
  9. [9] N. J. Fine, The distribution of the sum of digits (mod p), Bull. Amer. Math. Soc. 71 (1965), 651-652. Zbl0148.02005
  10. [10] P. Flajolet, P. J. Grabner, P. Kirschenhofer, ßs H. Prodinger and R. F. Tichy, Mellin transforms and asymptotics: digital sums, Theoret. Comput. Sci. 123 (1994), 291-314. Zbl0788.44004
  11. [11] H. Furstenberg, Ergodic behaviour of the diagonal measures and the theorem of Szemeredi on arithmetic progressions, J. Anal. Math. 34 (1978), 275-291. Zbl0426.28014
  12. [12] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-266. Zbl0155.09003
  13. [13] P. J. Grabner, ßs P. Kirschenhofer and H. Prodinger, The sum-of-digits function for complex bases, J. London Math. Soc. 57 (1998), 20-40. Zbl0959.11045
  14. [14] P. J. Grabner, ßs P. Liardet and R. F. Tichy, Odometers and systems of numeration, Acta Arith. 70 (1995), 103-123. Zbl0822.11008
  15. [15] P. J. Grabner and R. F. Tichy, α-expansions, linear recurrences, and the sum-of-digits function, Manuscripta Math. 70 (1991), 311-324. Zbl0725.11005
  16. [16] H. Helson, Cocycles on the circle, J. Operator Theory 16 (1986), 189-199. Zbl0644.43003
  17. [17] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer, Berlin, 1963. Zbl0115.10603
  18. [18] H. Hida, Elementary Theory of L-Functions and Eisenstein Series, Cambridge Univ. Press, 1993. Zbl0942.11024
  19. [19] E. Hlawka, ßs J. Schoissengeier and R. Taschner, Geometric and Analytic Theory of Numbers, Springer, 1991. Zbl0749.11001
  20. [20] T. Kamae, Mutual singularity of spectra of dynamical systems given by the 'sum of digits' to different bases, Astérisque 49 (1977), 109-114. Zbl0371.28018
  21. [21] I. Kátai and B. Kovács, Kanonische Zahlsysteme in der Theorie der quadratischen algebraischen Zahlen, Acta Sci. Math. (Szeged) 42 (1980), 99-107. Zbl0386.10007
  22. [22] I. Kátai and B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math. Acad. Sci. Hungar. 37 (1981), 159-164. Zbl0477.10012
  23. [23] I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged) 37 (1975), 255-260. Zbl0297.12003
  24. [24] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (1967), no. 5, 81-106. Zbl0172.07202
  25. [25] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison Wesley, London, 1981. Zbl0477.65002
  26. [26] B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar. 37 (1981), 405-407. Zbl0505.12001
  27. [27] B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. (Szeged) 55 (1991), 287-299. Zbl0760.11002
  28. [28] U. Krengel, Ergodic Theorems, de Gruyter, 1985. 
  29. [29] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, 1974. 
  30. [30] P. Liardet, Répartition et ergodicité, Séminaire de Théorie des Nombres Delange-Pisot-Poitou, 19e année, Paris, 1977/78, 12 pp. Zbl0392.10048
  31. [31] P. Liardet, Propriétés harmoniques de la numération suivant Jean Coquet, in: Colloque de Théorie Analytique des Nombres 'Jean Coquet', Publ. Math. Orsay 88-02, 1-35, CIRM, 1985. Zbl0713.11054
  32. [32] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, Berlin, 1990. Zbl0717.11045
  33. [33] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113. Zbl0184.26901
  34. [34] M. Queffélec, Mesures spectrales associées à certaines suites arithmétiques, Bull. Soc. Math. France 107 (1979), 385-421. Zbl0435.42007
  35. [35] K. Schmidt, Lectures on Cocycles and Ergodic Transformation Groups, McMillan, Delhi, 1977. 
  36. [36] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Stud. Adv. Math. 46, Cambridge Univ. Press, 1995. 
  37. [37] J. M. Thuswaldner, The sum of digits function in number fields, Bull. London Math. Soc. 30 (1998), 37-45. Zbl0921.11051
  38. [38] J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 (1968), 21-27. Zbl0162.06303
  39. [39] R. J. Zimmer, Extension of ergodic group actions, Illinois J. Math. 20 (1976), 373-409. Zbl0334.28015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.