Harmonic properties of the sum-of-digits function for complex bases
Peter J. Grabner; Pierre Liardet
Acta Arithmetica (1999)
- Volume: 91, Issue: 4, page 329-349
- ISSN: 0065-1036
Access Full Article
topHow to cite
topPeter J. Grabner, and Pierre Liardet. "Harmonic properties of the sum-of-digits function for complex bases." Acta Arithmetica 91.4 (1999): 329-349. <http://eudml.org/doc/207360>.
@article{PeterJ1999,
author = {Peter J. Grabner, Pierre Liardet},
journal = {Acta Arithmetica},
keywords = {digital expansions; canonical number system; sum-of-digits function; system of numeration; dynamical system; purely singular continuous spectrum; uniform distribution; discrepancy},
language = {eng},
number = {4},
pages = {329-349},
title = {Harmonic properties of the sum-of-digits function for complex bases},
url = {http://eudml.org/doc/207360},
volume = {91},
year = {1999},
}
TY - JOUR
AU - Peter J. Grabner
AU - Pierre Liardet
TI - Harmonic properties of the sum-of-digits function for complex bases
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 4
SP - 329
EP - 349
LA - eng
KW - digital expansions; canonical number system; sum-of-digits function; system of numeration; dynamical system; purely singular continuous spectrum; uniform distribution; discrepancy
UR - http://eudml.org/doc/207360
ER -
References
top- [1] W. Ambrose, Spectral resolution of groups of unitary operators, Duke Math. J. 11 (1944), 589-595. Zbl0061.25409
- [2] J.-P. Conze, Equirépartition et ergodicité de transformations cylindriques, Séminaire de Probabilité, Université de Rennes, 1976.
- [3] J. Coquet, Power sums of digital sums, J. Number Theory 22 (1986), 161-176. Zbl0578.10009
- [4] J. Coquet and P. van den Bosch, A summation formula involving Fibonacci digits, ibid. 22 (1986), 139-146.
- [5] H. Delange, Sur la fonction sommatoire de la fonction ``somme des chiffres'', Enseign. Math. (2) 21 (1975), 31-47. Zbl0306.10005
- [6] M. P. Drazin and J. S. Griffith, On the decimal representation of integers, Proc. Cambridge Philos. Soc. 48 (1952), 555-565. Zbl0047.04401
- [7] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, 1997.
- [8] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, 1974.
- [9] N. J. Fine, The distribution of the sum of digits (mod p), Bull. Amer. Math. Soc. 71 (1965), 651-652. Zbl0148.02005
- [10] P. Flajolet, P. J. Grabner, P. Kirschenhofer, ßs H. Prodinger and R. F. Tichy, Mellin transforms and asymptotics: digital sums, Theoret. Comput. Sci. 123 (1994), 291-314. Zbl0788.44004
- [11] H. Furstenberg, Ergodic behaviour of the diagonal measures and the theorem of Szemeredi on arithmetic progressions, J. Anal. Math. 34 (1978), 275-291. Zbl0426.28014
- [12] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-266. Zbl0155.09003
- [13] P. J. Grabner, ßs P. Kirschenhofer and H. Prodinger, The sum-of-digits function for complex bases, J. London Math. Soc. 57 (1998), 20-40. Zbl0959.11045
- [14] P. J. Grabner, ßs P. Liardet and R. F. Tichy, Odometers and systems of numeration, Acta Arith. 70 (1995), 103-123. Zbl0822.11008
- [15] P. J. Grabner and R. F. Tichy, α-expansions, linear recurrences, and the sum-of-digits function, Manuscripta Math. 70 (1991), 311-324. Zbl0725.11005
- [16] H. Helson, Cocycles on the circle, J. Operator Theory 16 (1986), 189-199. Zbl0644.43003
- [17] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer, Berlin, 1963. Zbl0115.10603
- [18] H. Hida, Elementary Theory of L-Functions and Eisenstein Series, Cambridge Univ. Press, 1993. Zbl0942.11024
- [19] E. Hlawka, ßs J. Schoissengeier and R. Taschner, Geometric and Analytic Theory of Numbers, Springer, 1991. Zbl0749.11001
- [20] T. Kamae, Mutual singularity of spectra of dynamical systems given by the 'sum of digits' to different bases, Astérisque 49 (1977), 109-114. Zbl0371.28018
- [21] I. Kátai and B. Kovács, Kanonische Zahlsysteme in der Theorie der quadratischen algebraischen Zahlen, Acta Sci. Math. (Szeged) 42 (1980), 99-107. Zbl0386.10007
- [22] I. Kátai and B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math. Acad. Sci. Hungar. 37 (1981), 159-164. Zbl0477.10012
- [23] I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged) 37 (1975), 255-260. Zbl0297.12003
- [24] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (1967), no. 5, 81-106. Zbl0172.07202
- [25] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison Wesley, London, 1981. Zbl0477.65002
- [26] B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar. 37 (1981), 405-407. Zbl0505.12001
- [27] B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. (Szeged) 55 (1991), 287-299. Zbl0760.11002
- [28] U. Krengel, Ergodic Theorems, de Gruyter, 1985.
- [29] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, 1974.
- [30] P. Liardet, Répartition et ergodicité, Séminaire de Théorie des Nombres Delange-Pisot-Poitou, 19e année, Paris, 1977/78, 12 pp. Zbl0392.10048
- [31] P. Liardet, Propriétés harmoniques de la numération suivant Jean Coquet, in: Colloque de Théorie Analytique des Nombres 'Jean Coquet', Publ. Math. Orsay 88-02, 1-35, CIRM, 1985. Zbl0713.11054
- [32] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, Berlin, 1990. Zbl0717.11045
- [33] W. Parry, Compact abelian group extensions of discrete dynamical systems, Z. Wahrsch. Verw. Gebiete 13 (1969), 95-113. Zbl0184.26901
- [34] M. Queffélec, Mesures spectrales associées à certaines suites arithmétiques, Bull. Soc. Math. France 107 (1979), 385-421. Zbl0435.42007
- [35] K. Schmidt, Lectures on Cocycles and Ergodic Transformation Groups, McMillan, Delhi, 1977.
- [36] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Stud. Adv. Math. 46, Cambridge Univ. Press, 1995.
- [37] J. M. Thuswaldner, The sum of digits function in number fields, Bull. London Math. Soc. 30 (1998), 37-45. Zbl0921.11051
- [38] J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 (1968), 21-27. Zbl0162.06303
- [39] R. J. Zimmer, Extension of ergodic group actions, Illinois J. Math. 20 (1976), 373-409. Zbl0334.28015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.