The Siegel-Walfisz theorem for Rankin-Selberg L-functions associated with two cusp forms

Yumiko Ichihara

Acta Arithmetica (2000)

  • Volume: 92, Issue: 3, page 215-227
  • ISSN: 0065-1036

How to cite

top

Yumiko Ichihara. "The Siegel-Walfisz theorem for Rankin-Selberg L-functions associated with two cusp forms." Acta Arithmetica 92.3 (2000): 215-227. <http://eudml.org/doc/207383>.

@article{YumikoIchihara2000,
author = {Yumiko Ichihara},
journal = {Acta Arithmetica},
keywords = {Rankin-Selberg -function; zero-free region; Siegel zero; Siegel-Walfisz prime number theorem},
language = {eng},
number = {3},
pages = {215-227},
title = {The Siegel-Walfisz theorem for Rankin-Selberg L-functions associated with two cusp forms},
url = {http://eudml.org/doc/207383},
volume = {92},
year = {2000},
}

TY - JOUR
AU - Yumiko Ichihara
TI - The Siegel-Walfisz theorem for Rankin-Selberg L-functions associated with two cusp forms
JO - Acta Arithmetica
PY - 2000
VL - 92
IS - 3
SP - 215
EP - 227
LA - eng
KW - Rankin-Selberg -function; zero-free region; Siegel zero; Siegel-Walfisz prime number theorem
UR - http://eudml.org/doc/207383
ER -

References

top
  1. [1] E. Carletti, G. Monti Bragadin and A. Perelli, On general L-functions, Acta Arith. 66 (1994), 147-179. Zbl0809.11046
  2. [2] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980. Zbl0453.10002
  3. [3] P. Deligne, La conjecture de Weil I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273-307. 
  4. [4] D. N. Goldfeld, A simple proof of Siegel's theorem, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1055. Zbl0287.12019
  5. [5] E. P. Golubeva and O. M. Fomenko, Values of Dirichlet series associated with modular forms at the points s=1/2, 1, J. Soviet Math. 36 (1987), 79-93. Zbl0609.10024
  6. [6] J. L. Hafner, On the representation of the summatory functions of a class of arithmetical functions, in: Lecture Notes in Math. 899, Springer, 1981, 148-165. 
  7. [7] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. 140 (1994), 161-181. Zbl0814.11032
  8. [8] J. Hoffstein and D. Ramakrishnan, Siegel zeros and cusp forms, Internat. Math. Res. Notices (1995), 279-308. Zbl0847.11043
  9. [9] W. Li, L-series of Rankin type and their functional equations, Math. Ann. 244 (1979), 135-166. Zbl0396.10017
  10. [10] Ju. I. Manin and A. A. Pančiškin, Convolutions of Hecke series and their values at lattice points, Math. USSR-Sb. 33 (1977), 539-571. Zbl0397.10016
  11. [11] A. P. Ogg, On a convolution of L-series, Invent. Math. 7 (1969), 297-312. Zbl0205.50902
  12. [12] A. Perelli, General L-functions, Ann. Mat. Pura Appl. 130 (1982), 287-306. Zbl0485.10030
  13. [13] A. Perelli, On the prime number theorem for the coefficients of certain modular forms, in: Banach Center Publ. 17, PWN-Polish Sci. Publ., Warszawa, 1985, 405-410. 
  14. [14] A. Perelli and G. Puglisi, Real zeros of general L-functions, Rend. Accad. Naz. Lincei (8) 70 (1982), 67-74. Zbl0506.10034
  15. [15] C. L. Siegel, Advanced Analytic Number Theory, Tata Inst. Fund. Res., Bombay, 1980. Zbl0478.10001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.