Approximation d'un nombre réel par des nombres algébriques de degré donné

Yann Bugeaud; Olivier Teulié

Acta Arithmetica (2000)

  • Volume: 93, Issue: 1, page 77-86
  • ISSN: 0065-1036

How to cite

top

Yann Bugeaud, and Olivier Teulié. "Approximation d'un nombre réel par des nombres algébriques de degré donné." Acta Arithmetica 93.1 (2000): 77-86. <http://eudml.org/doc/207401>.

@article{YannBugeaud2000,
author = {Yann Bugeaud, Olivier Teulié},
journal = {Acta Arithmetica},
keywords = {algebraic approximation; algebraic integers; algebraic numbers; measures of approximation},
language = {fre},
number = {1},
pages = {77-86},
title = {Approximation d'un nombre réel par des nombres algébriques de degré donné},
url = {http://eudml.org/doc/207401},
volume = {93},
year = {2000},
}

TY - JOUR
AU - Yann Bugeaud
AU - Olivier Teulié
TI - Approximation d'un nombre réel par des nombres algébriques de degré donné
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 1
SP - 77
EP - 86
LA - fre
KW - algebraic approximation; algebraic integers; algebraic numbers; measures of approximation
UR - http://eudml.org/doc/207401
ER -

References

top
  1. [1] V. Bernik and K. Tishchenko, Integral polynomials with an overfall of the coefficient values and Wirsing's problem, Dokl. Akad. Nauk Belarusi 37 (1993), 9-11. Zbl0811.11048
  2. [2] Y. Bugeaud, Approximation par des nombres algébriques, J. Number Theory, à paraître. Zbl0421.10022
  3. [3] Y. Bugeaud, On the approximation by algebraic numbers with bounded degree, Proceedings of the Number Theory Conference held in Graz, à paraître. 
  4. [4] H. Davenport and W. M. Schmidt, Approximation to real numbers by algebraic integers, Acta Arith. 15 (1969), 393-416. Zbl0186.08603
  5. [5] G. Diaz, Une nouvelle propriété d'approximation diophantienne, C. R. Acad. Sci. Paris 324 (1997), 969-972. 
  6. [6] M. Laurent and D. Roy, Criteria of algebraic independence with multiplicities and interpolation determinants, Trans. Amer. Math. Soc. 351 (1999), 1845-1870. Zbl0923.11106
  7. [7] M. Laurent and D. Roy, Sur l'approximation algébrique en degré de transcendance un, Ann. Inst. Fourier (Grenoble) 49 (1999), 27-55. Zbl0923.11105
  8. [8] D. Roy et M. Waldschmidt, Approximation diophantienne et indépendance algébrique de logarithmes, Ann. Sci. École Norm. Sup. 30 (1997), 753-796. Zbl0895.11030
  9. [9] D. Roy et M. Waldschmidt, Simultaneous approximation and algebraic independence, Ramanujan Math. J. 1 (1997), 379-430. Zbl0916.11042
  10. [10] W. M. Schmidt, Approximation to Algebraic Numbers, Monograph. Enseign. Math. 19, Univ. de Genève, 1971. Zbl0226.10033
  11. [11] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980. Zbl0421.10019
  12. [12] T. Schneider, Introduction aux nombres transcendants, Gauthier-Villars, Paris, 1959. Zbl0098.26304
  13. [13] V. G. Sprindžuk, Mahler's Problem in Metric Number Theory, Transl. Math. Monographs 25, Amer. Math. Soc., Providence, R.I., 1969. 
  14. [14] E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. 206 (1961), 67-77. Zbl0097.03503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.