Factorisations explicites de g(y) - h(z)

Pierrette Cassou-Noguès; Jean-Marc Couveignes

Acta Arithmetica (1999)

  • Volume: 87, Issue: 4, page 291-317
  • ISSN: 0065-1036

How to cite

top

Pierrette Cassou-Noguès, and Jean-Marc Couveignes. "Factorisations explicites de g(y) - h(z)." Acta Arithmetica 87.4 (1999): 291-317. <http://eudml.org/doc/207223>.

@article{PierretteCassou1999,
author = {Pierrette Cassou-Noguès, Jean-Marc Couveignes},
journal = {Acta Arithmetica},
keywords = {group representations; single groups; monodromy groups; explicit factorization; PARI; MAPLE; polynomials},
language = {fre},
number = {4},
pages = {291-317},
title = {Factorisations explicites de g(y) - h(z)},
url = {http://eudml.org/doc/207223},
volume = {87},
year = {1999},
}

TY - JOUR
AU - Pierrette Cassou-Noguès
AU - Jean-Marc Couveignes
TI - Factorisations explicites de g(y) - h(z)
JO - Acta Arithmetica
PY - 1999
VL - 87
IS - 4
SP - 291
EP - 317
LA - fre
KW - group representations; single groups; monodromy groups; explicit factorization; PARI; MAPLE; polynomials
UR - http://eudml.org/doc/207223
ER -

References

top
  1. [1] N. M. Adrianov, Classification des groupes cartographiques primitifs des arbres plans, Fundamental'naya i prikladnaya matematika 3, 1997 (en Russe). 
  2. [2] N. M. Adrianov, Yu. Kotchetkov et A. D. Souvorov, Arbres planaires avec des groupes cartographiques exceptionnels, preprint, 1997 (en Russe). 
  3. [3] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, User's guide to PARI-GP, Université de Bordeaux, 1996. 
  4. [4] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of a n - b n , Ann. of Math. 5 (1903), 173-180. Zbl35.0205.01
  5. [5] W. Bosma et al., Magma Reference Manual, http://www.maths.usyd.edu.au, 1997. 
  6. [6] W. Burnside, On simply transitive groups of prime degree, Quart. J. Math. 37 (1906), 215-221. Zbl37.0172.01
  7. [7] R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, Ginn, Boston, 1937. Zbl0019.19702
  8. [8] J. W. S. Cassels, Factorization of polynomials in several variables, in: Proc. 15th Scandinavian Congress, Oslo, Lecture Notes in Math. 118, Springer, 1968, 1-17. 
  9. [9] B. W. Char et al., Maple V Language Reference Manual, Springer, 1991. Zbl0758.68038
  10. [10] C. Chevalley, Thèses, Faculté des sciences de l'Université de Paris, 1934. 
  11. [11] J. Conway et al., Atlas of Finite Groups, Clarendon Press, 1985. 
  12. [12] C. W. Curtis, W. M. Kantor and G. M. Seitz, The 2-transitives permutations representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1-59. Zbl0374.20002
  13. [13] H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x)=g(y), Quart. J. Math. Oxford Ser. 12 (1961), 304-312. Zbl0121.28403
  14. [14] H. Davenport and A. Schinzel, Two problems concerning polynomials, J. Reine Angew. Math. 214 (1964), 386-391. Zbl0152.02303
  15. [15] P. Dembowski, Finite Geometries, Springer, 1968. Zbl0159.50001
  16. [16] D. Dixon, The Structure of Linear Groups, Van Nostrand Reinhold, 1971. Zbl0232.20079
  17. [17] L. Schneps (ed.), The Theory of Grothendieck's Dessins d'Enfant, Cambridge University Press, 1994. 
  18. [18] W. Feit, Automorphisms of symmetric balanced incomplete block designs, Math. Z. 118 (1970), 40-49. Zbl0204.32702
  19. [19] W. Feit, On symmetric balanced incomplete block designs with doubly transitive automorphism groups, J. Combin. Theory Ser. A 14 (1973), 221-247. Zbl0278.05016
  20. [20] W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181. Zbl0454.20014
  21. [21] M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41-55. 
  22. [22] M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17 (1973), 128-146. Zbl0266.14013
  23. [23] M. Fried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 571-602. 
  24. [24] M. Hall, Jr., The Theory of Groups, Macmillan, 1959. 
  25. [25] S. Lang, Algebra, Addison-Wesley, 1984. 
  26. [26] P. Müller, Primitive monodromy groups for polynomials, in: Recent Developments in the Inverse Galois Problem, M. Fried (ed.), Contemp. Math. 186, Amer. Math. Soc., 1995, 385-401. Zbl0840.12001
  27. [27] H. J. Ryser, Combinatorial Mathematics, Wiley, 1963. Zbl0112.24806
  28. [28] I. Schur, Zur Theorie der einfach transitiven Permutationsgruppen, Preuss. Akad. Wiss. Phys.-Math. Kl. 1933, 598-623. Zbl59.0151.01
  29. [29] J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385. Zbl64.0972.04
  30. [30] J. A. Todd, A combinatorial problem, J. Math. Phys. Mass. Inst. Tech. 12 (1933), 321-333. Zbl0007.10005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.