J-energy preserving well-posed linear systems
International Journal of Applied Mathematics and Computer Science (2001)
- Volume: 11, Issue: 6, page 1361-1378
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Adamajan A. and Arov D.Z. (1970): On unitary couplings of semiunitary operators, In: Eleven Papers in Analysis. — Providence, R.I.: AMS, pp.75–129.
- Arov D.Z. (1979): Passive linear stationary dynamic systems. — Siberian Math. J., Vol.20, pp.149–162. Zbl0437.93019
- Arov D.Z. (1999): Passive linear systems and scattering theory, In: Dynamical Systems, Control Coding, Computer Vision (G. Picci and D.S. Gilliam, Eds.). — Basel: Birkhäuser, pp.27–44. Zbl0921.93005
- Arov D.Z. and Nudelman M.A. (1996): Passive linear stationary dynamical scattering systems with continuous time. — Int. Eqns. Oper. Theory, Vol.24, pp.1–45. Zbl0838.47004
- Callier F.M. and Winkin J. (1990): Spectral factorization and LQ-optimal regulation for multivariable distributed systems. — Int. J. Contr., Vol.52, pp.55–75. Zbl0713.93024
- Callier F.M. and Winkin J. (1992): LQ-optimal control of infinite-dimensional systems by spectral factorization. — Automatica, Vol.28, pp.757–770. Zbl0776.49023
- Callier F.M. and Winkin J. (1999): The spectral factorization problem for multivariable distributed parameter systems. — Int. Eqns. Oper. Theory, Vol.34, pp.270–292. Zbl0933.93042
- Curtain R.F. and Ichikawa A. (1996): The Nehari problem for infinite-dimensional linear systems of parabolic type. — Int. Eqns. Oper. Theory, Vol.26, pp.29–45. Zbl0858.47017
- Curtain R.F. and Oostveen J.C. (1998): The Nehari problem for nonexponentially stable systems. — Int. Eqns. Oper. Theory, Vol.31, pp.307–320. Zbl0910.93024
- Curtain R.F. and Weiss G. (1989): Well posedness of triples of operators (in the sense of linear systems theory), In: Control and Optimization of Distributed Parameter Systems (F. Kappel, K. Kunisk and W. Schappacher, Eds.). — Basel: Birkhäuser, pp.41–59.
- Curtain R.F., Weiss G. and Weiss M. (1997): Stabilization of irrational transfer functions by controllers with internal loop, In: Systems, Approximation, Singular Integral Operators and Related Topics (A.A. Borichev and N.K. Nikolski, Eds.). — Birkhäuser, pp.179–208. Zbl1175.93186
- Engel K.-J. (1998): On the characterization of admissible control- and observation operators. — Syst. Contr. Lett., Vol.34, pp.225–227. Zbl0909.93034
- Flandoli F., Lasiecka I. and Triggiani R. (1988): Algebraic Riccati equations with nonsmoothing observation arising in hyperbolic and Euler–Bernoulli boundary control problems. — Ann. Mat. Pura Appl., Vol.4, No.153, pp.307–382. Zbl0674.49004
- Grabowski P. (1991): On the spectral-Lyapunov approach to parametric optimization of distributed-parameter systems. — IMA J. Math. Contr. Inf., Vol.7, pp.317–338. Zbl0721.49006
- Grabowski P. (1993): The LQ controller synthesis problem. — IMA J. Math. Contr. Inf., Vol.10, pp.131–148. Zbl0825.93200
- Grabowski P. (1994): The LQ controller problem: An example. — IMA J. Math. Contr. Inf., Vol.11, pp.355–368. Zbl0825.93201
- Grabowski P. and Callier F.M. (1996): Admissible observation operators. Semigroup criteria of admissibility. — Int. Eqns. Oper. Theory, Vol.25, pp.182–198. Zbl0856.93021
- Grabowski P. and Callier F.M. (2001): Boundary control systems in factor form: Transfer functions and input-output maps. — Int. Eqns. Oper. Theory, Vol.41, pp.1–37. Zbl1009.93041
- van Keulen B. (1993): H∞ -Control for Distributed Parameter Systems: A State Space Approach. — Basel: Birkhäuser. Zbl0788.93018
- Lasiecka I. and Triggiani R. (2000): Control Theory for Partial Differential Equations: Continuous and Approximation Theorems. I: Abstract Parabolic Systems. — Cambridge: Cambridge University Press. Zbl0942.93001
- Lasiecka I. and Triggiani R. (2000): Control Theory for Partial Differential Equations: Continuous and Approximation Theorems. II: Abstract Hyperbolic-Like Systems over a Finite Horizon. — Cambridge: Cambridge University Press. Zbl0961.93003
- Lax P.D. and Phillips R.S. (1967): Scattering Theory. — New York: Academic Press. Zbl0214.12002
- Lax P.D. and Phillips R.S. (1973): Scattering theory for dissipative hyperbolic systems. — J. Funct. Anal., Vol.14, pp.172–235. Zbl0295.35069
- Malinen J. (2000): Discrete time H ∞ algebraic Riccati equations. — Ph.D. Thesis, Helsinki University of Technology. Zbl0965.93006
- Malinen J., Staffans O.J. and Weiss G. (2002): When is a linear system conservative? — in preparation. Zbl1125.47007
- Mikkola K. (2002): Infinite-dimensional H ∞ and H 2 regulator problems and their algebraic Riccati equations with applications to the Wiener class. — Ph.D. Thesis, Helsinki University of Technology.
- Oostveen J. (2000): Strongly stabilizable distributed parameter systems. — Philadelphia, PA: SIAM. Zbl0964.93004
- Salamon D. (1987): Infinite dimensional linear systems with unbounded control and observation: A functional analytic approach. — Trans. Amer. Math. Soc., Vol.300, pp.383–431. Zbl0623.93040
- Salamon D. (1989): Realization theory in Hilbert space. — Math. Syst. Theory, Vol.21, pp.147–164. Zbl0668.93018
- Sasane A.J. and Curtain R.F. (2001): Inertia theorems for operator Lyapunov inequalities. — Syst. Contr. Lett., Vol.43, pp.127–132. Zbl0974.93026
- Sasane A.J. and Curtain R.F. (2001): Optimal Hankel norm approximation for the Pritchard- Salamon class of infinite-dimensional systems. — Int. Eqns. Oper. Theory, Vol.39, pp.98–126. Zbl0990.93021
- Staffans O.J. (1995): Quadratic optimal control of stable systems through spectral factorization. — Math. Contr. Sign. Syst., Vol.8, pp.167–197. Zbl0843.93019
- Staffans O.J. (1996): On the discrete and continuous time infinite-dimensional algebraic Riccati equations. — Syst. Contr. Lett., Vol.29, pp.131–138. Zbl0875.93199
- Staffans O.J. (1997): Quadratic optimal control of stable well-posed linear systems. — Trans. Amer. Math. Soc., Vol.349, pp.3679–3715. Zbl0889.49023
- Staffans O.J. (1998a): Coprime factorizations and well-posed linear systems. — SIAM J. Contr. Optim., Vol.36, pp.1268–1292. Zbl0919.93040
- Staffans O.J. (1998b): Quadratic optimal control of well-posed linear systems. — SIAM J. Contr. Optim., Vol.37, pp.131–164. Zbl0955.49018
- Staffans O.J. (1998c): Feedback representations of critical controls for well-posed linear systems. — Int. J. Robust Nonlin. Contr., Vol.8, pp.1189–1217. Zbl0951.93038
- Staffans O.J. (1998d): On the distributed stable full information H ∞ minimax problem. — Int. J. Robust Nonlin. Contr., Vol.8, pp.1255–1305. Zbl0951.93029
- Staffans O.J. (1999a): Admissible factorizations of Hankel operators induce well-posed linear systems. — Syst. Contr. Lett., Vol.37, pp.301–307. Zbl0948.93014
- Staffans O.J. (1999b): Quadratic optimal control through coprime and spectral factorisation. — Europ. J. Contr., Vol.5, pp.167–179. Zbl0979.93544
- Staffans O.J. (2002): Well-Posed Linear Systems: Part I. Book manuscript, available at http://www.abo.fi/~staffans/.
- Staffans O.J. and Mikkola K.M. (1998): A minimax formulation of the infinite-dimensional Nehari problem. — Proc. Symp. Mathematical Theory of Networks and Systems, MTNS’98, Padova, Italy, pp.539–542.
- Staffans O.J. and Weiss G. (2002a): Transfer functions of regular linear systems. Part II: The system operator and the Lax-Phillips semigroup. — to appear in Trans. Amer. Math. Soc. Zbl0996.93012
- Staffans O.J. and Weiss G. (2002b): Transfer functions of regular linear systems. Part III: Inversions and duality. — manuscript. Zbl0996.93012
- Sz.-Nagy B. and Foiaş C. (1970): Harmonic Analysis of Operators on Hilbert Space. — Amsterdam: North-Holland. Zbl0201.45003
- Weiss G. (1989a): Admissibility of unbounded control operators. — SIAM J. Contr. Optim., Vol.27, pp.527–545. Zbl0685.93043
- Weiss G. (1989b): Admissible observation operators for linear semigroups. — Israel J. Math., Vol.65, pp.17–43. Zbl0696.47040
- Weiss G. (1989c): The representation of regular linear systems on Hilbert spaces, In: Control and Optimization of Distributed Parameter Systems (F. Kappel, K. Kunisk and W. Schappacher, Eds.). — Basel: Birkhäuser, pp.401–416.
- Weiss G. (1991): Representations of shift-invariant operators on L 2 by H ∞ transfer functions: An elementary proof, a generalization to Lp , and a counterexample for L∞ . — Math. Contr. Sign. Syst., Vol.4, pp.193–203. Zbl0724.93021
- Weiss G. (1994a): Transfer functions of regular linear systems. Part I: Characterizations of regularity. — Trans. Amer. Math. Soc., Vol.342, pp.827–854. Zbl0798.93036
- Weiss G. (1994b): Regular linear systems with feedback. — Math. Contr. Sign. Syst., Vol.7, pp.23–57. Zbl0819.93034
- Weiss G. and Tucsnak M. (2001): How to get a conservative well-posed linear system out of thin air. Part I: Well-posedness and energy balance. — submitted.
- Weiss G., Staffans O.J. and Tucsnak M. (2001): Well-posed linear systems–A survey with emphasis on conservative systems. — Int. J. Appl. Math. Comp. Sci., Vol.11, No.1, pp.7–34. Zbl0990.93046
- Weiss M. (1997): Riccati equation theory for Pritchard-Salamon systems: A Popov function approach. — IMA J. Math. Contr. Inf., Vol.14, pp.1–37. Zbl0876.93023
- Weiss M. and Weiss G. (1997): Optimal control of stable weakly regular linear systems. — Math. Contr. Sign. Syst., Vol.10, pp.287–330. Zbl0884.49021
- Willems J.C. (1972): Dissipative dynamical systems Part I: General theory. — Arch. Rat. Mech. Anal., Vol.45, pp.321–351. Zbl0252.93002
- Willems J.C. (1972b): Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. — Arch. Rat. Mech. Anal., Vol.45, pp.352–393. Zbl0252.93003