Hyperbolic Cauchy problem and Leray's residue formula
Annales Polonici Mathematici (2000)
- Volume: 74, Issue: 1, page 275-290
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topTanabé, Susumu. "Hyperbolic Cauchy problem and Leray's residue formula." Annales Polonici Mathematici 74.1 (2000): 275-290. <http://eudml.org/doc/208371>.
@article{Tanabé2000,
abstract = {We give an algebraic description of (wave) fronts that appear in strictly hyperbolic Cauchy problems. A concrete form of a defining function of the wave front issued from the initial algebraic variety is obtained with the aid of Gauss-Manin systems satisfied by Leray's residues.},
author = {Tanabé, Susumu},
journal = {Annales Polonici Mathematici},
keywords = {Leray's residue formula; Gauss-Manin connexion; Bonn; hyperbolic Cauchy problem; asymptotic expansion; Gauss-Nanin systems},
language = {eng},
number = {1},
pages = {275-290},
title = {Hyperbolic Cauchy problem and Leray's residue formula},
url = {http://eudml.org/doc/208371},
volume = {74},
year = {2000},
}
TY - JOUR
AU - Tanabé, Susumu
TI - Hyperbolic Cauchy problem and Leray's residue formula
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 275
EP - 290
AB - We give an algebraic description of (wave) fronts that appear in strictly hyperbolic Cauchy problems. A concrete form of a defining function of the wave front issued from the initial algebraic variety is obtained with the aid of Gauss-Manin systems satisfied by Leray's residues.
LA - eng
KW - Leray's residue formula; Gauss-Manin connexion; Bonn; hyperbolic Cauchy problem; asymptotic expansion; Gauss-Nanin systems
UR - http://eudml.org/doc/208371
ER -
References
top- [1] A. G. Aleksandrov and S. Tanabé, Gauss-Manin connexions, logarithmic forms and hypergeometric functions, in: Geometry from the Pacific Rim (Singapore, 1994), de Gruyter, 1997, 1-21. Zbl0888.32017
- [2] P. Appel et J. Kampé de Fériet, Fonctions hypergéometriques et hypersphériques, Gauthier-Villars, Paris, 1926.
- [3] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161. Zbl0186.26101
- [4] L. Gårding, Sharp fronts of paired oscillatory integrals, Publ. RIMS Kyoto Univ. 12 suppl. (1977), 53-68.
- [5] G.-M. Greuel, Der Gauß-Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266. Zbl0285.14002
- [6] G.-M. Greuel und H. Hamm, Invarianten quasihomogener vollständiger Durchschnitten, Invent. Math. 49 (1978), 67-86.
- [7] Y. Hamada, The singularities of the solutions of the Cauchy problem, Publ. RIMS Kyoto Univ. 5 (1969), 21-40. Zbl0203.40702
- [8] Y. Hamada, J. Leray et C. Wagschal, Systèmes d'équations aux dérivées partielles à caractéristiques multiples: problème de Cauchy ramifié, hyperbolicité partielle, J. Math. Pures Appl. 55 (1976), 297-352. Zbl0307.35056
- [9] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Springer, 1984.
- [10] E. Leichtnam, Le problème de Cauchy ramifié linéaire pour des données à singularités algébriques, Mem. Soc. Math. France 53 (1993). Zbl0819.35007
- [11] Kh. M. Malikov, Overdeterminacy of the differential systems for versal integrals of type A, D, E, Differentsial'nye Uravneniya 18 (1982), 1394-1400 (in Russian).
- [12] V. P. Palamodov, Deformations of complex spaces, in: Several Complex Variables IV, Encyclopedia Math. Sci. 10, Springer, 1990, 105-194.
- [13] I. G. Petrovskiĭ, On the diffusion of waves and the lacunas for hyperbolic equations, Mat. Sb. 17 (1945), 289-370.
- [14] F. Pham, Introduction à l'étude topologique des singularités de Landau, Gauthier-Villars, 1967.
- [15] S. Tanabé, Lagrangian variety and the condition for the presence of sharp front of the fundamental solution to Cauchy problem, Sci. Papers College Arts Sci. Univ. Tokyo, 42 (1992), 149-159. Zbl0802.35092
- [16] S. Tanabé, Transformée de Mellin des intégrales fibres de courbe espace associées aux singularités isolées d'intersection complète quasihomogènes, Compositio Math., to appear.
- [17] S. Tanabé, Connexion de Gauss-Manin associée à la déformation verselle des singularités isolées d'hypersurface et son application au XVIe problème de Hilbert, preprint.
- [18] S. Tanabé, On geometry of fronts in wave propagations, in: Geometry and Topology of Caustics-Caustics'98, Banach Center Publ. 50, Inst. Math., Polish Acad. Sci., 1999, 287-304. Zbl0951.35074
- [19] V. A. Vassiliev, Ramified Integrals, Singularities and Lacunas, Kluwer, Dordrecht, 1995.
- [20] B. Ziemian, Leray residue formula and asymptotics of solutions to constant coefficient PDEs, Topol. Methods Nonlinear Anal. 3 (1994), 257-293. Zbl0813.47060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.