Hyperbolic Cauchy problem and Leray's residue formula

Susumu Tanabé

Annales Polonici Mathematici (2000)

  • Volume: 74, Issue: 1, page 275-290
  • ISSN: 0066-2216

Abstract

top
We give an algebraic description of (wave) fronts that appear in strictly hyperbolic Cauchy problems. A concrete form of a defining function of the wave front issued from the initial algebraic variety is obtained with the aid of Gauss-Manin systems satisfied by Leray's residues.

How to cite

top

Tanabé, Susumu. "Hyperbolic Cauchy problem and Leray's residue formula." Annales Polonici Mathematici 74.1 (2000): 275-290. <http://eudml.org/doc/208371>.

@article{Tanabé2000,
abstract = {We give an algebraic description of (wave) fronts that appear in strictly hyperbolic Cauchy problems. A concrete form of a defining function of the wave front issued from the initial algebraic variety is obtained with the aid of Gauss-Manin systems satisfied by Leray's residues.},
author = {Tanabé, Susumu},
journal = {Annales Polonici Mathematici},
keywords = {Leray's residue formula; Gauss-Manin connexion; Bonn; hyperbolic Cauchy problem; asymptotic expansion; Gauss-Nanin systems},
language = {eng},
number = {1},
pages = {275-290},
title = {Hyperbolic Cauchy problem and Leray's residue formula},
url = {http://eudml.org/doc/208371},
volume = {74},
year = {2000},
}

TY - JOUR
AU - Tanabé, Susumu
TI - Hyperbolic Cauchy problem and Leray's residue formula
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 275
EP - 290
AB - We give an algebraic description of (wave) fronts that appear in strictly hyperbolic Cauchy problems. A concrete form of a defining function of the wave front issued from the initial algebraic variety is obtained with the aid of Gauss-Manin systems satisfied by Leray's residues.
LA - eng
KW - Leray's residue formula; Gauss-Manin connexion; Bonn; hyperbolic Cauchy problem; asymptotic expansion; Gauss-Nanin systems
UR - http://eudml.org/doc/208371
ER -

References

top
  1. [1] A. G. Aleksandrov and S. Tanabé, Gauss-Manin connexions, logarithmic forms and hypergeometric functions, in: Geometry from the Pacific Rim (Singapore, 1994), de Gruyter, 1997, 1-21. Zbl0888.32017
  2. [2] P. Appel et J. Kampé de Fériet, Fonctions hypergéometriques et hypersphériques, Gauthier-Villars, Paris, 1926. 
  3. [3] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161. Zbl0186.26101
  4. [4] L. Gårding, Sharp fronts of paired oscillatory integrals, Publ. RIMS Kyoto Univ. 12 suppl. (1977), 53-68. 
  5. [5] G.-M. Greuel, Der Gauß-Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266. Zbl0285.14002
  6. [6] G.-M. Greuel und H. Hamm, Invarianten quasihomogener vollständiger Durchschnitten, Invent. Math. 49 (1978), 67-86. 
  7. [7] Y. Hamada, The singularities of the solutions of the Cauchy problem, Publ. RIMS Kyoto Univ. 5 (1969), 21-40. Zbl0203.40702
  8. [8] Y. Hamada, J. Leray et C. Wagschal, Systèmes d'équations aux dérivées partielles à caractéristiques multiples: problème de Cauchy ramifié, hyperbolicité partielle, J. Math. Pures Appl. 55 (1976), 297-352. Zbl0307.35056
  9. [9] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Springer, 1984. 
  10. [10] E. Leichtnam, Le problème de Cauchy ramifié linéaire pour des données à singularités algébriques, Mem. Soc. Math. France 53 (1993). Zbl0819.35007
  11. [11] Kh. M. Malikov, Overdeterminacy of the differential systems for versal integrals of type A, D, E, Differentsial'nye Uravneniya 18 (1982), 1394-1400 (in Russian). 
  12. [12] V. P. Palamodov, Deformations of complex spaces, in: Several Complex Variables IV, Encyclopedia Math. Sci. 10, Springer, 1990, 105-194. 
  13. [13] I. G. Petrovskiĭ, On the diffusion of waves and the lacunas for hyperbolic equations, Mat. Sb. 17 (1945), 289-370. 
  14. [14] F. Pham, Introduction à l'étude topologique des singularités de Landau, Gauthier-Villars, 1967. 
  15. [15] S. Tanabé, Lagrangian variety and the condition for the presence of sharp front of the fundamental solution to Cauchy problem, Sci. Papers College Arts Sci. Univ. Tokyo, 42 (1992), 149-159. Zbl0802.35092
  16. [16] S. Tanabé, Transformée de Mellin des intégrales fibres de courbe espace associées aux singularités isolées d'intersection complète quasihomogènes, Compositio Math., to appear. 
  17. [17] S. Tanabé, Connexion de Gauss-Manin associée à la déformation verselle des singularités isolées d'hypersurface et son application au XVIe problème de Hilbert, preprint. 
  18. [18] S. Tanabé, On geometry of fronts in wave propagations, in: Geometry and Topology of Caustics-Caustics'98, Banach Center Publ. 50, Inst. Math., Polish Acad. Sci., 1999, 287-304. Zbl0951.35074
  19. [19] V. A. Vassiliev, Ramified Integrals, Singularities and Lacunas, Kluwer, Dordrecht, 1995. 
  20. [20] B. Ziemian, Leray residue formula and asymptotics of solutions to constant coefficient PDEs, Topol. Methods Nonlinear Anal. 3 (1994), 257-293. Zbl0813.47060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.