On geometry of fronts in wave propagations

Susumu Tanabé

Banach Center Publications (1999)

  • Volume: 50, Issue: 1, page 287-304
  • ISSN: 0137-6934

Abstract

top
We give a geometric descriptions of (wave) fronts in wave propagation processes. Concrete form of defining function of wave front issued from initial algebraic variety is obtained by the aid of Gauss-Manin systems associated with certain complete intersection singularities. In the case of propagations on the plane, we get restrictions on types of possible cusps that can appear on the wave front.

How to cite

top

Tanabé, Susumu. "On geometry of fronts in wave propagations." Banach Center Publications 50.1 (1999): 287-304. <http://eudml.org/doc/209015>.

@article{Tanabé1999,
abstract = {We give a geometric descriptions of (wave) fronts in wave propagation processes. Concrete form of defining function of wave front issued from initial algebraic variety is obtained by the aid of Gauss-Manin systems associated with certain complete intersection singularities. In the case of propagations on the plane, we get restrictions on types of possible cusps that can appear on the wave front.},
author = {Tanabé, Susumu},
journal = {Banach Center Publications},
keywords = {initial algebraic variety; Gauss-Manin systems},
language = {eng},
number = {1},
pages = {287-304},
title = {On geometry of fronts in wave propagations},
url = {http://eudml.org/doc/209015},
volume = {50},
year = {1999},
}

TY - JOUR
AU - Tanabé, Susumu
TI - On geometry of fronts in wave propagations
JO - Banach Center Publications
PY - 1999
VL - 50
IS - 1
SP - 287
EP - 304
AB - We give a geometric descriptions of (wave) fronts in wave propagation processes. Concrete form of defining function of wave front issued from initial algebraic variety is obtained by the aid of Gauss-Manin systems associated with certain complete intersection singularities. In the case of propagations on the plane, we get restrictions on types of possible cusps that can appear on the wave front.
LA - eng
KW - initial algebraic variety; Gauss-Manin systems
UR - http://eudml.org/doc/209015
ER -

References

top
  1. [1] A. G. Aleksandrov and S. Tanabé, Gauss-Manin connexions, logarithmic forms and hypergeometric functions, in: Geometry from the Pacific Rim (Singapore 1994), Walter de Gruyter, Berlin, 1997, 1-21. Zbl0888.32017
  2. [2] P. Appell and J. Kampé de Fériet, Fonctions hypergeometriques et hypersphériques, Gauthier-Villars, Paris, 1926. 
  3. [3] M. F. Atiyah, R. Bott, L. Gårding, Lacunas for hyperbolic differential operators with constant coefficients, II, Acta Math. 131 (1973), 145-206. 
  4. [4] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161. Zbl0186.26101
  5. [5] L. Gårding, Sharp fronts of paired oscillatory integrals, Publ. Res. Inst. Math. Sci. 12 (1976/77), suppl., 53-68; Corrections: Publ. Res. Inst. Math. Sci. 13 (1977/78), 821. 
  6. [6] G.-M. Greuel, Der Gauß-Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266. Zbl0285.14002
  7. [7] G.-M. Greuel, H. A. Hamm, Invarianten quasihomogener vollständiger Durchschnitte, Invent. Math. 49 (1978), 67-86. 
  8. [8] Y. Hamada, The singularities of the solutions of the Cauchy problem, Publ. Res. Inst. Math. Sci. 5 (1969), 21-40. Zbl0203.40702
  9. [9] Y. Hamada, J. Leray, C.Wagschal, Systèmes d'équations aux dérivées partielles à caractéristiques multiples: problème de Cauchy ramifié; hyperbolicité partielle, J. Math. Pures Appl. (9) 55 (1976), 297-352. Zbl0307.35056
  10. [10] L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. I Grundlehren Math. Wiss. 256, Springer, Berlin, 1983. Zbl0521.35002
  11. [11] E. Leichtnam, Le problème de Cauchy ramifié linéaire pour des données à singularités algébriques, Mém. Soc. Math. France 53 (1993), 128 pp. Zbl0819.35007
  12. [12] Kh. M. Malikov, Over-determination of a system of differential equations for versal integrals of type A, D, E (in Russian), Differ. Uravn. 18 (1982), 1394-1401; English transl.: Differential Equations 18 (1982), 986-991. 
  13. [13] V. P. Palamodov, Deformations of complex spaces, in: Several Complex Variables IV, Encyclopaedia Math. Sci. 10, Springer, Berlin, 1990, 105-194. 
  14. [14] I. G. Petrovskiĭ, On the diffusion of waves and the lacunas for hyperbolic equations, Mat. Sb.(N.S.) 17(59) (1945), 289-370. 
  15. [15] F. Pham, Introduction à l'étude topologique des singularités de Landau, Gauthier-Villars, Paris, 1967. Zbl0202.20401
  16. [16] S. Tanabé, Lagrangian variety and the condition for the presence of sharp front of the fundamental solution to Cauchy problem, Sci. Papers College Arts Sci. Univ. Tokyo 42 (1992), 149-159. Zbl0802.35092
  17. [17] S. Tanabé, Transformée de Mellin des intégrales fibres de courbe espace associées aux singularités isolées d'intersection complète quasihomogènes, preprint MPIM Bonn, 1998, 28 pp. 
  18. [18] S. Tanabé, Connexion de Gauss-Manin associée à la déformation verselle des singularités isolées d'hypersurface et son application au XVIe problème de Hilbert, Ann. Institut Fourier (Grenoble), submitted. 
  19. [19] S. Tanabé, An application of Gauss-Manin systems to the asymptotic analysis around singular locus in wave propagations, Ann. Institut Fourier (Grenoble), submitted. 
  20. [20] A. N. Varchenko, On normal forms of nonsmoothness of solutions of hyperbolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 652-665; English transl.: Math. USSR-Izv. 30 (1988), 615-628. Zbl0646.35054
  21. [21] V. A. Vassiliev, Ramified Integrals, Singularities and Lacunas, Math. Appl. 315, Kluwer Acad. Publ., Dordrecht, 1995. Zbl0935.32026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.