On geometry of fronts in wave propagations
Banach Center Publications (1999)
- Volume: 50, Issue: 1, page 287-304
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topTanabé, Susumu. "On geometry of fronts in wave propagations." Banach Center Publications 50.1 (1999): 287-304. <http://eudml.org/doc/209015>.
@article{Tanabé1999,
abstract = {We give a geometric descriptions of (wave) fronts in wave propagation processes. Concrete form of defining function of wave front issued from initial algebraic variety is obtained by the aid of Gauss-Manin systems associated with certain complete intersection singularities. In the case of propagations on the plane, we get restrictions on types of possible cusps that can appear on the wave front.},
author = {Tanabé, Susumu},
journal = {Banach Center Publications},
keywords = {initial algebraic variety; Gauss-Manin systems},
language = {eng},
number = {1},
pages = {287-304},
title = {On geometry of fronts in wave propagations},
url = {http://eudml.org/doc/209015},
volume = {50},
year = {1999},
}
TY - JOUR
AU - Tanabé, Susumu
TI - On geometry of fronts in wave propagations
JO - Banach Center Publications
PY - 1999
VL - 50
IS - 1
SP - 287
EP - 304
AB - We give a geometric descriptions of (wave) fronts in wave propagation processes. Concrete form of defining function of wave front issued from initial algebraic variety is obtained by the aid of Gauss-Manin systems associated with certain complete intersection singularities. In the case of propagations on the plane, we get restrictions on types of possible cusps that can appear on the wave front.
LA - eng
KW - initial algebraic variety; Gauss-Manin systems
UR - http://eudml.org/doc/209015
ER -
References
top- [1] A. G. Aleksandrov and S. Tanabé, Gauss-Manin connexions, logarithmic forms and hypergeometric functions, in: Geometry from the Pacific Rim (Singapore 1994), Walter de Gruyter, Berlin, 1997, 1-21. Zbl0888.32017
- [2] P. Appell and J. Kampé de Fériet, Fonctions hypergeometriques et hypersphériques, Gauthier-Villars, Paris, 1926.
- [3] M. F. Atiyah, R. Bott, L. Gårding, Lacunas for hyperbolic differential operators with constant coefficients, II, Acta Math. 131 (1973), 145-206.
- [4] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161. Zbl0186.26101
- [5] L. Gårding, Sharp fronts of paired oscillatory integrals, Publ. Res. Inst. Math. Sci. 12 (1976/77), suppl., 53-68; Corrections: Publ. Res. Inst. Math. Sci. 13 (1977/78), 821.
- [6] G.-M. Greuel, Der Gauß-Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266. Zbl0285.14002
- [7] G.-M. Greuel, H. A. Hamm, Invarianten quasihomogener vollständiger Durchschnitte, Invent. Math. 49 (1978), 67-86.
- [8] Y. Hamada, The singularities of the solutions of the Cauchy problem, Publ. Res. Inst. Math. Sci. 5 (1969), 21-40. Zbl0203.40702
- [9] Y. Hamada, J. Leray, C.Wagschal, Systèmes d'équations aux dérivées partielles à caractéristiques multiples: problème de Cauchy ramifié; hyperbolicité partielle, J. Math. Pures Appl. (9) 55 (1976), 297-352. Zbl0307.35056
- [10] L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. I Grundlehren Math. Wiss. 256, Springer, Berlin, 1983. Zbl0521.35002
- [11] E. Leichtnam, Le problème de Cauchy ramifié linéaire pour des données à singularités algébriques, Mém. Soc. Math. France 53 (1993), 128 pp. Zbl0819.35007
- [12] Kh. M. Malikov, Over-determination of a system of differential equations for versal integrals of type A, D, E (in Russian), Differ. Uravn. 18 (1982), 1394-1401; English transl.: Differential Equations 18 (1982), 986-991.
- [13] V. P. Palamodov, Deformations of complex spaces, in: Several Complex Variables IV, Encyclopaedia Math. Sci. 10, Springer, Berlin, 1990, 105-194.
- [14] I. G. Petrovskiĭ, On the diffusion of waves and the lacunas for hyperbolic equations, Mat. Sb.(N.S.) 17(59) (1945), 289-370.
- [15] F. Pham, Introduction à l'étude topologique des singularités de Landau, Gauthier-Villars, Paris, 1967. Zbl0202.20401
- [16] S. Tanabé, Lagrangian variety and the condition for the presence of sharp front of the fundamental solution to Cauchy problem, Sci. Papers College Arts Sci. Univ. Tokyo 42 (1992), 149-159. Zbl0802.35092
- [17] S. Tanabé, Transformée de Mellin des intégrales fibres de courbe espace associées aux singularités isolées d'intersection complète quasihomogènes, preprint MPIM Bonn, 1998, 28 pp.
- [18] S. Tanabé, Connexion de Gauss-Manin associée à la déformation verselle des singularités isolées d'hypersurface et son application au XVIe problème de Hilbert, Ann. Institut Fourier (Grenoble), submitted.
- [19] S. Tanabé, An application of Gauss-Manin systems to the asymptotic analysis around singular locus in wave propagations, Ann. Institut Fourier (Grenoble), submitted.
- [20] A. N. Varchenko, On normal forms of nonsmoothness of solutions of hyperbolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 652-665; English transl.: Math. USSR-Izv. 30 (1988), 615-628. Zbl0646.35054
- [21] V. A. Vassiliev, Ramified Integrals, Singularities and Lacunas, Math. Appl. 315, Kluwer Acad. Publ., Dordrecht, 1995. Zbl0935.32026
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.