Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale
Annales Polonici Mathematici (2000)
- Volume: 75, Issue: 1, page 35-45
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Bochnak, M. Coste and M. F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb. 36, Springer, 1998.
- [2] L. van den Dries, Tame Topology and o-Minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, 1988.
- [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. Zbl0889.03025
- [4] K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, in: Real Algebraic Geometry (Rennes, 1991), Lecture Notes in Math. 1524, Springer, 1992, 316-322. Zbl0779.32006
- [5] K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier (Grenoble) 48 (1998), 769-783. Zbl0934.32009
- [6] K. Kurdyka, T. Mostowski and A. Parusiński, Gradient conjecture in o-minimal structures, en préparation. Zbl1053.37008
- [7] K. Kurdyka, P. Orro and S. Simon, Semialgebraic Sard theorem for generalized critical values, preprint, Univ. Savoie, 1999. Zbl1067.58031
- [8] T. L. Loi and A. Zaharia, Bifurcation sets of functions definable in o-minimal structures, Illinois J. Math. 42 (1998), 449-457. Zbl0948.37030
- [9] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259. Zbl0808.03022
- [10] R. S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132. Zbl0143.35203
- [11] A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384. Zbl0840.32007
- [12] P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. 146 (1997), 647-691. Zbl0919.58003