Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale

D. D'Acunto

Annales Polonici Mathematici (2000)

  • Volume: 75, Issue: 1, page 35-45
  • ISSN: 0066-2216

Abstract

top
We prove that the set of asymptotic critical values of a C 1 function definable in an o-minimal structure is finite, even if the structure is not polynomially bounded. As a consequence, the function is a locally trivial fibration over the complement of this set.

How to cite

top

D'Acunto, D.. "Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale." Annales Polonici Mathematici 75.1 (2000): 35-45. <http://eudml.org/doc/208382>.

@article{DAcunto2000,
author = {D'Acunto, D.},
journal = {Annales Polonici Mathematici},
keywords = {bifurcation set; asymptotic critical value; o-minimal structure; asymptotic critical values; locally trivial fibration; differentiable function},
language = {fre},
number = {1},
pages = {35-45},
title = {Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale},
url = {http://eudml.org/doc/208382},
volume = {75},
year = {2000},
}

TY - JOUR
AU - D'Acunto, D.
TI - Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale
JO - Annales Polonici Mathematici
PY - 2000
VL - 75
IS - 1
SP - 35
EP - 45
LA - fre
KW - bifurcation set; asymptotic critical value; o-minimal structure; asymptotic critical values; locally trivial fibration; differentiable function
UR - http://eudml.org/doc/208382
ER -

References

top
  1. [1] J. Bochnak, M. Coste and M. F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb. 36, Springer, 1998. 
  2. [2] L. van den Dries, Tame Topology and o-Minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, 1988. 
  3. [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. Zbl0889.03025
  4. [4] K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, in: Real Algebraic Geometry (Rennes, 1991), Lecture Notes in Math. 1524, Springer, 1992, 316-322. Zbl0779.32006
  5. [5] K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier (Grenoble) 48 (1998), 769-783. Zbl0934.32009
  6. [6] K. Kurdyka, T. Mostowski and A. Parusiński, Gradient conjecture in o-minimal structures, en préparation. Zbl1053.37008
  7. [7] K. Kurdyka, P. Orro and S. Simon, Semialgebraic Sard theorem for generalized critical values, preprint, Univ. Savoie, 1999. Zbl1067.58031
  8. [8] T. L. Loi and A. Zaharia, Bifurcation sets of functions definable in o-minimal structures, Illinois J. Math. 42 (1998), 449-457. Zbl0948.37030
  9. [9] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259. Zbl0808.03022
  10. [10] R. S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132. Zbl0143.35203
  11. [11] A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384. Zbl0840.32007
  12. [12] P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. 146 (1997), 647-691. Zbl0919.58003

NotesEmbed ?

top

You must be logged in to post comments.