Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale

D. D'Acunto

Annales Polonici Mathematici (2000)

  • Volume: 75, Issue: 1, page 35-45
  • ISSN: 0066-2216

Abstract

top
We prove that the set of asymptotic critical values of a C 1 function definable in an o-minimal structure is finite, even if the structure is not polynomially bounded. As a consequence, the function is a locally trivial fibration over the complement of this set.

How to cite

top

D'Acunto, D.. "Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale." Annales Polonici Mathematici 75.1 (2000): 35-45. <http://eudml.org/doc/208382>.

@article{DAcunto2000,
author = {D'Acunto, D.},
journal = {Annales Polonici Mathematici},
keywords = {bifurcation set; asymptotic critical value; o-minimal structure; asymptotic critical values; locally trivial fibration; differentiable function},
language = {fre},
number = {1},
pages = {35-45},
title = {Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale},
url = {http://eudml.org/doc/208382},
volume = {75},
year = {2000},
}

TY - JOUR
AU - D'Acunto, D.
TI - Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale
JO - Annales Polonici Mathematici
PY - 2000
VL - 75
IS - 1
SP - 35
EP - 45
LA - fre
KW - bifurcation set; asymptotic critical value; o-minimal structure; asymptotic critical values; locally trivial fibration; differentiable function
UR - http://eudml.org/doc/208382
ER -

References

top
  1. [1] J. Bochnak, M. Coste and M. F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb. 36, Springer, 1998. 
  2. [2] L. van den Dries, Tame Topology and o-Minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, 1988. 
  3. [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. Zbl0889.03025
  4. [4] K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, in: Real Algebraic Geometry (Rennes, 1991), Lecture Notes in Math. 1524, Springer, 1992, 316-322. Zbl0779.32006
  5. [5] K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier (Grenoble) 48 (1998), 769-783. Zbl0934.32009
  6. [6] K. Kurdyka, T. Mostowski and A. Parusiński, Gradient conjecture in o-minimal structures, en préparation. Zbl1053.37008
  7. [7] K. Kurdyka, P. Orro and S. Simon, Semialgebraic Sard theorem for generalized critical values, preprint, Univ. Savoie, 1999. Zbl1067.58031
  8. [8] T. L. Loi and A. Zaharia, Bifurcation sets of functions definable in o-minimal structures, Illinois J. Math. 42 (1998), 449-457. Zbl0948.37030
  9. [9] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259. Zbl0808.03022
  10. [10] R. S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132. Zbl0143.35203
  11. [11] A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384. Zbl0840.32007
  12. [12] P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. of Math. 146 (1997), 647-691. Zbl0919.58003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.