On the growth of analytic semigroups along vertical lines
Studia Mathematica (2000)
- Volume: 138, Issue: 2, page 165-177
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGalé, José, and Ransford, Thomas. "On the growth of analytic semigroups along vertical lines." Studia Mathematica 138.2 (2000): 165-177. <http://eudml.org/doc/216696>.
@article{Galé2000,
abstract = {We construct two Banach algebras, one which contains analytic semigroups $(a^z)_\{Re z>0\}$ such that $|a^\{1+iy\}| → ∞$ arbitrarily slowly as $|y| → ∞$, the other which contains ones such that $|a^\{1+iy\}| → ∞$ arbitrarily fast},
author = {Galé, José, Ransford, Thomas},
journal = {Studia Mathematica},
keywords = {analytic semigroups},
language = {eng},
number = {2},
pages = {165-177},
title = {On the growth of analytic semigroups along vertical lines},
url = {http://eudml.org/doc/216696},
volume = {138},
year = {2000},
}
TY - JOUR
AU - Galé, José
AU - Ransford, Thomas
TI - On the growth of analytic semigroups along vertical lines
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 2
SP - 165
EP - 177
AB - We construct two Banach algebras, one which contains analytic semigroups $(a^z)_{Re z>0}$ such that $|a^{1+iy}| → ∞$ arbitrarily slowly as $|y| → ∞$, the other which contains ones such that $|a^{1+iy}| → ∞$ arbitrarily fast
LA - eng
KW - analytic semigroups
UR - http://eudml.org/doc/216696
ER -
References
top- [BH] A. Beurling and H. Helson, Fourier-Stieltjes transforms with bounded powers, Math. Scand. 1 (1953), 120-126. Zbl0050.33004
- [C] T. Carleman, Sur un théorème de Weierstrass, Ark. Mat. Astronom. Fys. 20B (1927), 1-5.
- [E1] J. Esterle, A complex-variable proof of the Wiener Tauberian theorem, Ann. Inst. Fourier (Grenoble) 30 (1980), 91-96. Zbl0419.40005
- [E2] J. Esterle, Rates of decrease of sequences of powers in commutative radical Banach algebras, Pacific J. Math. 94 (1981), 61-82. Zbl0481.46026
- [E3] J. Esterle, Elements for a classification of commutative radical Banach algebras, in: Proc. Conf. on Radical Banach Algebras and Automatic Continuity (Long Beach, 1981), J. M. Bachar and others (ed.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 4-65.
- [E4] J. Esterle, private communication.
- [EG] J. Esterle and J. E. Galé, Regularity of Banach algebras generated by analytic semigroups satisfying some growth conditions, Proc. Amer. Math. Soc. 92 (1984), 377-380. Zbl0559.46023
- [G] J. E. Galé, Banach algebras generated by analytic semigroups having compactness properties on vertical lines, in: Proc. Conf. on Automatic Continuity and Banach Algebras (Canberra, 1989), R. J. Loy (ed.), Proc. Centre Math. Anal. Austral. Nat. Univ. 21, Austral. Nat. Univ., Canberra, 1989, 126-143. Zbl0708.46048
- [GW] J. E. Galé and M. C. White, An analytic semigroup version of the Beurling-Helson theorem, Math. Z. 225 (1997), 151-165. Zbl0874.46031
- [GM] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979. Zbl0439.43001
- [K] J.-P. Kahane, Séries de Fourier absolument convergentes, Springer, Berlin, 1970.
- [R] T. J. Ransford, Norm inequalities for holomorphic semigroups, Israel J. Math. 97 (1997), 157-173. Zbl0899.47027
- [S] A. M. Sinclair, Continuous Semigroups in Banach Algebras, Cambridge Univ. Press, Cambridge, 1982. Zbl0493.46042
- [W] M. C. White, Strong Wedderburn decompositions of Banach algebras containing analytic semigroups, J. London Math. Soc. (2) 49 (1994), 331-342. Zbl0833.46047
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.