On the growth of analytic semigroups along vertical lines

José Galé; Thomas Ransford

Studia Mathematica (2000)

  • Volume: 138, Issue: 2, page 165-177
  • ISSN: 0039-3223

Abstract

top
We construct two Banach algebras, one which contains analytic semigroups ( a z ) R e z > 0 such that | a 1 + i y | arbitrarily slowly as | y | , the other which contains ones such that | a 1 + i y | arbitrarily fast

How to cite

top

Galé, José, and Ransford, Thomas. "On the growth of analytic semigroups along vertical lines." Studia Mathematica 138.2 (2000): 165-177. <http://eudml.org/doc/216696>.

@article{Galé2000,
abstract = {We construct two Banach algebras, one which contains analytic semigroups $(a^z)_\{Re z>0\}$ such that $|a^\{1+iy\}| → ∞$ arbitrarily slowly as $|y| → ∞$, the other which contains ones such that $|a^\{1+iy\}| → ∞$ arbitrarily fast},
author = {Galé, José, Ransford, Thomas},
journal = {Studia Mathematica},
keywords = {analytic semigroups},
language = {eng},
number = {2},
pages = {165-177},
title = {On the growth of analytic semigroups along vertical lines},
url = {http://eudml.org/doc/216696},
volume = {138},
year = {2000},
}

TY - JOUR
AU - Galé, José
AU - Ransford, Thomas
TI - On the growth of analytic semigroups along vertical lines
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 2
SP - 165
EP - 177
AB - We construct two Banach algebras, one which contains analytic semigroups $(a^z)_{Re z>0}$ such that $|a^{1+iy}| → ∞$ arbitrarily slowly as $|y| → ∞$, the other which contains ones such that $|a^{1+iy}| → ∞$ arbitrarily fast
LA - eng
KW - analytic semigroups
UR - http://eudml.org/doc/216696
ER -

References

top
  1. [BH] A. Beurling and H. Helson, Fourier-Stieltjes transforms with bounded powers, Math. Scand. 1 (1953), 120-126. Zbl0050.33004
  2. [C] T. Carleman, Sur un théorème de Weierstrass, Ark. Mat. Astronom. Fys. 20B (1927), 1-5. 
  3. [E1] J. Esterle, A complex-variable proof of the Wiener Tauberian theorem, Ann. Inst. Fourier (Grenoble) 30 (1980), 91-96. Zbl0419.40005
  4. [E2] J. Esterle, Rates of decrease of sequences of powers in commutative radical Banach algebras, Pacific J. Math. 94 (1981), 61-82. Zbl0481.46026
  5. [E3] J. Esterle, Elements for a classification of commutative radical Banach algebras, in: Proc. Conf. on Radical Banach Algebras and Automatic Continuity (Long Beach, 1981), J. M. Bachar and others (ed.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 4-65. 
  6. [E4] J. Esterle, private communication. 
  7. [EG] J. Esterle and J. E. Galé, Regularity of Banach algebras generated by analytic semigroups satisfying some growth conditions, Proc. Amer. Math. Soc. 92 (1984), 377-380. Zbl0559.46023
  8. [G] J. E. Galé, Banach algebras generated by analytic semigroups having compactness properties on vertical lines, in: Proc. Conf. on Automatic Continuity and Banach Algebras (Canberra, 1989), R. J. Loy (ed.), Proc. Centre Math. Anal. Austral. Nat. Univ. 21, Austral. Nat. Univ., Canberra, 1989, 126-143. Zbl0708.46048
  9. [GW] J. E. Galé and M. C. White, An analytic semigroup version of the Beurling-Helson theorem, Math. Z. 225 (1997), 151-165. Zbl0874.46031
  10. [GM] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York, 1979. Zbl0439.43001
  11. [K] J.-P. Kahane, Séries de Fourier absolument convergentes, Springer, Berlin, 1970. 
  12. [R] T. J. Ransford, Norm inequalities for holomorphic semigroups, Israel J. Math. 97 (1997), 157-173. Zbl0899.47027
  13. [S] A. M. Sinclair, Continuous Semigroups in Banach Algebras, Cambridge Univ. Press, Cambridge, 1982. Zbl0493.46042
  14. [W] M. C. White, Strong Wedderburn decompositions of Banach algebras containing analytic semigroups, J. London Math. Soc. (2) 49 (1994), 331-342. Zbl0833.46047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.