Divergences in formal variational calculus and boundary terms in Hamiltonian formalism
Banach Center Publications (1997)
- Volume: 39, Issue: 1, page 373-388
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topSoloviev, Vladimir. "Divergences in formal variational calculus and boundary terms in Hamiltonian formalism." Banach Center Publications 39.1 (1997): 373-388. <http://eudml.org/doc/208675>.
@article{Soloviev1997,
abstract = {It is shown how to extend the formal variational calculus in order to incorporate integrals of divergences into it. Such a generalization permits to study nontrivial boundary problems in field theory on the base of canonical formalism.},
author = {Soloviev, Vladimir},
journal = {Banach Center Publications},
keywords = {Poisson bracket; formal variational calculus; integrals of divergences; boundary value problems; field theory; canonical formalism},
language = {eng},
number = {1},
pages = {373-388},
title = {Divergences in formal variational calculus and boundary terms in Hamiltonian formalism},
url = {http://eudml.org/doc/208675},
volume = {39},
year = {1997},
}
TY - JOUR
AU - Soloviev, Vladimir
TI - Divergences in formal variational calculus and boundary terms in Hamiltonian formalism
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 373
EP - 388
AB - It is shown how to extend the formal variational calculus in order to incorporate integrals of divergences into it. Such a generalization permits to study nontrivial boundary problems in field theory on the base of canonical formalism.
LA - eng
KW - Poisson bracket; formal variational calculus; integrals of divergences; boundary value problems; field theory; canonical formalism
UR - http://eudml.org/doc/208675
ER -
References
top- [Ald] S. J. Aldersley, Higher Eulerian operators and some of their applications, J. Math. Phys. 20 (1979), 522-531. Zbl0416.58028
- [And76] I. M. Anderson, Mathematical foundations of the Einstein field equations, Ph. D. thesis, Univ. of Arizona, 1976.
- [And78] I. M. Anderson, Tensorial Euler-Lagrange expressions and conservation laws, Aequationes Math. 17 (1978), 255-291. Zbl0418.49041
- [And92] I. M. Anderson, Introduction to the variational bicomplex, in: Mathematical aspects of classical field theory, M. J. Gotay, J. E. Marsden and V. Moncrief (eds.), Contemp. Math. 132, AMS, Providence, 1992.
- [Arn] V. I. Arnol'd, Mathematical methods of classical mechanics, Nauka, Moscow, 1974 (in Russian).
- [ADM] R. Arnowitt, S. Deser and C. W. Misner, Consistency of the canonical reduction of General Relativity, J. Math. Phys. 1 (1960), 434-439. Zbl0098.19103
- [BH] J.D. Brown and M. Henneaux, On the Poisson brackets of differential generators in classical field theory, J. Math. Phys. 27 (1986), 489-491.
- [Dorf] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley and Sons, New York, 1993.
- [GD] I. M. Gel'fand and L. A. Dickey, Asymptotics of Sturm-Liouville equation resolvent and algebra of Korteweg-de Vries equation, Uspekhi Mat. Nauk 30 (1975), 67-100 (in Russian).
- [JK] J. Jezierski and J. Kijowski, The localization of energy in gauge field theories and in linear gravitation, Gen. Relativity Gravitation 22 (1990), 1283-1307. Zbl0716.58038
- [KT] J. Kijowski and W. M. Tulczyjew, A symplectic framework for field theories, Lecture Notes in Phys. 107, Springer, New York, 1979.
- [KMGZ] M. D. Kruskal, R. M. Miura, C. S. Gardner and N. J. Zabusky, Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys. 11 (1970), 952-960. Zbl0283.35022
- [LMMR] D. Lewis, J. Marsden, R. Montgomery and T. Ratiu, The Hamiltonian structure for dynamic free boundary problems, Phys. D 18 (1986), 391-404. Zbl0638.58044
- [LR] A. N. Leznov, A. V. Razumov, The canonical symmetry for integrable systems, J. Math. Phys. 35 (1994), 1738-1754. Zbl0801.58039
- [Nij] A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, Indag. Math. 17 (1955), 390-397. Zbl0068.15001
- [Olv84] P. J. Olver, Hamiltonian perturbation theory and water waves, in: Fluids and Plasmas: Geometry and Dynamics, J. E. Marsden (ed.), Contemp. Math. 28, AMS, Providence, 1984.
- [Olv86] P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 1986.
- [RT] T. Regge and C. Teitelboim, Role of surface integrals in Hamiltonian formalism of General Relativity, Ann. Physics 88 (1974), 286-318. Zbl0328.70016
- [Sol85] V. O. Soloviev, Algebra of asymptotic Poincaré group generators in General Relativity, Teoret. Mat. Fiz. 65 (1985), 400-415 (in Russian).
- [Sol92] V. O. Soloviev, How canonical are Ashtekar's variables?, Phys. Lett. B 292 (1992), 30-34.
- [Sol93] V. O. Soloviev, Boundary values as Hamiltonian variables. I. New Poisson brackets, J. Math. Phys. 34 (1993), 5747-5769. Zbl0785.70014
- [Sol94] V. O. Soloviev, Boundary values as Hamiltonian variables. II. Graded structures, q-alg/9501017, Preprint IHEP 94-145, Protvino, 1994.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.