Divergences in formal variational calculus and boundary terms in Hamiltonian formalism

Vladimir Soloviev

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 373-388
  • ISSN: 0137-6934

Abstract

top
It is shown how to extend the formal variational calculus in order to incorporate integrals of divergences into it. Such a generalization permits to study nontrivial boundary problems in field theory on the base of canonical formalism.

How to cite

top

Soloviev, Vladimir. "Divergences in formal variational calculus and boundary terms in Hamiltonian formalism." Banach Center Publications 39.1 (1997): 373-388. <http://eudml.org/doc/208675>.

@article{Soloviev1997,
abstract = {It is shown how to extend the formal variational calculus in order to incorporate integrals of divergences into it. Such a generalization permits to study nontrivial boundary problems in field theory on the base of canonical formalism.},
author = {Soloviev, Vladimir},
journal = {Banach Center Publications},
keywords = {Poisson bracket; formal variational calculus; integrals of divergences; boundary value problems; field theory; canonical formalism},
language = {eng},
number = {1},
pages = {373-388},
title = {Divergences in formal variational calculus and boundary terms in Hamiltonian formalism},
url = {http://eudml.org/doc/208675},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Soloviev, Vladimir
TI - Divergences in formal variational calculus and boundary terms in Hamiltonian formalism
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 373
EP - 388
AB - It is shown how to extend the formal variational calculus in order to incorporate integrals of divergences into it. Such a generalization permits to study nontrivial boundary problems in field theory on the base of canonical formalism.
LA - eng
KW - Poisson bracket; formal variational calculus; integrals of divergences; boundary value problems; field theory; canonical formalism
UR - http://eudml.org/doc/208675
ER -

References

top
  1. [Ald] S. J. Aldersley, Higher Eulerian operators and some of their applications, J. Math. Phys. 20 (1979), 522-531. Zbl0416.58028
  2. [And76] I. M. Anderson, Mathematical foundations of the Einstein field equations, Ph. D. thesis, Univ. of Arizona, 1976. 
  3. [And78] I. M. Anderson, Tensorial Euler-Lagrange expressions and conservation laws, Aequationes Math. 17 (1978), 255-291. Zbl0418.49041
  4. [And92] I. M. Anderson, Introduction to the variational bicomplex, in: Mathematical aspects of classical field theory, M. J. Gotay, J. E. Marsden and V. Moncrief (eds.), Contemp. Math. 132, AMS, Providence, 1992. 
  5. [Arn] V. I. Arnol'd, Mathematical methods of classical mechanics, Nauka, Moscow, 1974 (in Russian). 
  6. [ADM] R. Arnowitt, S. Deser and C. W. Misner, Consistency of the canonical reduction of General Relativity, J. Math. Phys. 1 (1960), 434-439. Zbl0098.19103
  7. [BH] J.D. Brown and M. Henneaux, On the Poisson brackets of differential generators in classical field theory, J. Math. Phys. 27 (1986), 489-491. 
  8. [Dorf] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley and Sons, New York, 1993. 
  9. [GD] I. M. Gel'fand and L. A. Dickey, Asymptotics of Sturm-Liouville equation resolvent and algebra of Korteweg-de Vries equation, Uspekhi Mat. Nauk 30 (1975), 67-100 (in Russian). 
  10. [JK] J. Jezierski and J. Kijowski, The localization of energy in gauge field theories and in linear gravitation, Gen. Relativity Gravitation 22 (1990), 1283-1307. Zbl0716.58038
  11. [KT] J. Kijowski and W. M. Tulczyjew, A symplectic framework for field theories, Lecture Notes in Phys. 107, Springer, New York, 1979. 
  12. [KMGZ] M. D. Kruskal, R. M. Miura, C. S. Gardner and N. J. Zabusky, Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys. 11 (1970), 952-960. Zbl0283.35022
  13. [LMMR] D. Lewis, J. Marsden, R. Montgomery and T. Ratiu, The Hamiltonian structure for dynamic free boundary problems, Phys. D 18 (1986), 391-404. Zbl0638.58044
  14. [LR] A. N. Leznov, A. V. Razumov, The canonical symmetry for integrable systems, J. Math. Phys. 35 (1994), 1738-1754. Zbl0801.58039
  15. [Nij] A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, Indag. Math. 17 (1955), 390-397. Zbl0068.15001
  16. [Olv84] P. J. Olver, Hamiltonian perturbation theory and water waves, in: Fluids and Plasmas: Geometry and Dynamics, J. E. Marsden (ed.), Contemp. Math. 28, AMS, Providence, 1984. 
  17. [Olv86] P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 1986. 
  18. [RT] T. Regge and C. Teitelboim, Role of surface integrals in Hamiltonian formalism of General Relativity, Ann. Physics 88 (1974), 286-318. Zbl0328.70016
  19. [Sol85] V. O. Soloviev, Algebra of asymptotic Poincaré group generators in General Relativity, Teoret. Mat. Fiz. 65 (1985), 400-415 (in Russian). 
  20. [Sol92] V. O. Soloviev, How canonical are Ashtekar's variables?, Phys. Lett. B 292 (1992), 30-34. 
  21. [Sol93] V. O. Soloviev, Boundary values as Hamiltonian variables. I. New Poisson brackets, J. Math. Phys. 34 (1993), 5747-5769. Zbl0785.70014
  22. [Sol94] V. O. Soloviev, Boundary values as Hamiltonian variables. II. Graded structures, q-alg/9501017, Preprint IHEP 94-145, Protvino, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.