Division et extension dans des classes de Carleman de fonctions holomorphes

Vincent Thilliez

Banach Center Publications (1998)

  • Volume: 44, Issue: 1, page 233-246
  • ISSN: 0137-6934

Abstract

top
Let Ω be a bounded pseudoconvex domain in n with C 1 boundary and let X be a complete intersection submanifold of Ω, defined by holomorphic functions v 1 , . . . , v p (1 ≤ p ≤ n-1) smooth up to ∂Ω. We give sufficient conditions ensuring that a function f holomorphic in X (resp. in Ω, vanishing on X), and smooth up to the boundary, extends to a function g holomorphic in Ω and belonging to a given strongly non-quasianalytic Carleman class l ! M l in Ω ¯ (resp. satisfies f = v 1 f 1 + . . . + v p f p with f 1 , . . . , f p holomorphic in Ω and l ! M l -regular in Ω ¯ ). The essential assumption is that f and v 1 , . . . , v p belong to some (maybe smaller) Carleman class l ! M l - , where the sequences M - and M are precisely related by geometric conditions on X and Ω.

How to cite

top

Thilliez, Vincent. "Division et extension dans des classes de Carleman de fonctions holomorphes." Banach Center Publications 44.1 (1998): 233-246. <http://eudml.org/doc/208887>.

@article{Thilliez1998,
abstract = {Let Ω be a bounded pseudoconvex domain in $ℂ^n$ with $C^1$ boundary and let X be a complete intersection submanifold of Ω, defined by holomorphic functions $v_1,...,v_p$ (1 ≤ p ≤ n-1) smooth up to ∂Ω. We give sufficient conditions ensuring that a function f holomorphic in X (resp. in Ω, vanishing on X), and smooth up to the boundary, extends to a function g holomorphic in Ω and belonging to a given strongly non-quasianalytic Carleman class $\{l!M_l\}$ in $\bar\{Ω\}$ (resp. satisfies $f = v_1 f_1+... + v_p f_p$ with $f_1,...,f_p$ holomorphic in Ω and $\{l!M_l\}$-regular in $\bar\{Ω\}$). The essential assumption is that f and $v_1,... ,v_p$ belong to some (maybe smaller) Carleman class $\{l!M^-_l\}$, where the sequences $M^-$ and M are precisely related by geometric conditions on X and Ω.},
author = {Thilliez, Vincent},
journal = {Banach Center Publications},
keywords = {extension; Carleman class of holomorphic functions; division theorem},
language = {eng},
number = {1},
pages = {233-246},
title = {Division et extension dans des classes de Carleman de fonctions holomorphes},
url = {http://eudml.org/doc/208887},
volume = {44},
year = {1998},
}

TY - JOUR
AU - Thilliez, Vincent
TI - Division et extension dans des classes de Carleman de fonctions holomorphes
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 233
EP - 246
AB - Let Ω be a bounded pseudoconvex domain in $ℂ^n$ with $C^1$ boundary and let X be a complete intersection submanifold of Ω, defined by holomorphic functions $v_1,...,v_p$ (1 ≤ p ≤ n-1) smooth up to ∂Ω. We give sufficient conditions ensuring that a function f holomorphic in X (resp. in Ω, vanishing on X), and smooth up to the boundary, extends to a function g holomorphic in Ω and belonging to a given strongly non-quasianalytic Carleman class ${l!M_l}$ in $\bar{Ω}$ (resp. satisfies $f = v_1 f_1+... + v_p f_p$ with $f_1,...,f_p$ holomorphic in Ω and ${l!M_l}$-regular in $\bar{Ω}$). The essential assumption is that f and $v_1,... ,v_p$ belong to some (maybe smaller) Carleman class ${l!M^-_l}$, where the sequences $M^-$ and M are precisely related by geometric conditions on X and Ω.
LA - eng
KW - extension; Carleman class of holomorphic functions; division theorem
UR - http://eudml.org/doc/208887
ER -

References

top
  1. [A1] E. Amar, Cohomologie complexe et applications, J. London Math. Soc. (2) 29 (1984), 127-140. 
  2. [A2] E. Amar, Non-division dans A ( Ω ¯ ) , Math. Z. 188 (1985), 493-511. 
  3. [DBT] P. de Bartolomeis G. Tomassini, Finitely generated ideals in A ( D ¯ ) , Adv. in Math. 46 (1982), 162-170. Zbl0499.32012
  4. [BBMT] J. Bonet, R. W. Braun, R. Meise & B. A. Taylor, Whitney's extension theorem for nonquasianalytic functions, Studia Math. 99 (1991), 156-184. Zbl0738.46009
  5. [B] J. Bruna, An extension theorem of Whitney type for non quasi-analytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505. Zbl0419.26010
  6. [CC1] J. Chaumat & A.-M. Chollet, Théorème de Whitney dans des classes ultradifférentiables, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 901-906. 
  7. [CC2] J. Chaumat A.-M. Chollet, Noyaux pour résoudre l’équation ¯ dans des classes ultradifférentiables sur des compacts irréguliers de n , in: Several Complex Variables (Stockholm 1987/1988), Math. Notes 38, Princeton Univ. Press, Princeton, 1993, 205-226. 
  8. [D] E. M. Dynkin, Pseudoanalytic extension of smooth functions. The uniform scale, Amer. Math. Soc. Transl. 115 (1980), 33-58. 
  9. [GS] R. Gay A. Sebbar, Division et extension dans l’algèbre A ( Ω ¯ ) d’un ouvert pseudoconvexe à bord lisse de n , Math. Z. 189 (1985), 421-447. Zbl0547.32009
  10. [G] R. C. Gunning, Introduction to Holomorphic Functions of Several Variables, vol. III: Homological Theory, Wadsworth & Brooks/Cole, Monterey, 1990. Zbl0699.32001
  11. [M] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, Bombay, 1966. Zbl0177.17902
  12. [N] A. Nagel, On algebras of holomorphic functions with C boundary values, Duke Math. J. 41 (1974), 527-535. Zbl0291.32023
  13. [Th1] V. Thilliez, Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de n , Ann. Polon. Math. 63 (1996), 71-88. 
  14. [Th2] V. Thilliez, Sur les fonctions composées ultradifférentiables, J. Math. Pures Appl. (9) 76 (1997), 499-524. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.