Division et extension dans des classes de Carleman de fonctions holomorphes
Banach Center Publications (1998)
- Volume: 44, Issue: 1, page 233-246
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topThilliez, Vincent. "Division et extension dans des classes de Carleman de fonctions holomorphes." Banach Center Publications 44.1 (1998): 233-246. <http://eudml.org/doc/208887>.
@article{Thilliez1998,
abstract = {Let Ω be a bounded pseudoconvex domain in $ℂ^n$ with $C^1$ boundary and let X be a complete intersection submanifold of Ω, defined by holomorphic functions $v_1,...,v_p$ (1 ≤ p ≤ n-1) smooth up to ∂Ω. We give sufficient conditions ensuring that a function f holomorphic in X (resp. in Ω, vanishing on X), and smooth up to the boundary, extends to a function g holomorphic in Ω and belonging to a given strongly non-quasianalytic Carleman class $\{l!M_l\}$ in $\bar\{Ω\}$ (resp. satisfies $f = v_1 f_1+... + v_p f_p$ with $f_1,...,f_p$ holomorphic in Ω and $\{l!M_l\}$-regular in $\bar\{Ω\}$). The essential assumption is that f and $v_1,... ,v_p$ belong to some (maybe smaller) Carleman class $\{l!M^-_l\}$, where the sequences $M^-$ and M are precisely related by geometric conditions on X and Ω.},
author = {Thilliez, Vincent},
journal = {Banach Center Publications},
keywords = {extension; Carleman class of holomorphic functions; division theorem},
language = {eng},
number = {1},
pages = {233-246},
title = {Division et extension dans des classes de Carleman de fonctions holomorphes},
url = {http://eudml.org/doc/208887},
volume = {44},
year = {1998},
}
TY - JOUR
AU - Thilliez, Vincent
TI - Division et extension dans des classes de Carleman de fonctions holomorphes
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 233
EP - 246
AB - Let Ω be a bounded pseudoconvex domain in $ℂ^n$ with $C^1$ boundary and let X be a complete intersection submanifold of Ω, defined by holomorphic functions $v_1,...,v_p$ (1 ≤ p ≤ n-1) smooth up to ∂Ω. We give sufficient conditions ensuring that a function f holomorphic in X (resp. in Ω, vanishing on X), and smooth up to the boundary, extends to a function g holomorphic in Ω and belonging to a given strongly non-quasianalytic Carleman class ${l!M_l}$ in $\bar{Ω}$ (resp. satisfies $f = v_1 f_1+... + v_p f_p$ with $f_1,...,f_p$ holomorphic in Ω and ${l!M_l}$-regular in $\bar{Ω}$). The essential assumption is that f and $v_1,... ,v_p$ belong to some (maybe smaller) Carleman class ${l!M^-_l}$, where the sequences $M^-$ and M are precisely related by geometric conditions on X and Ω.
LA - eng
KW - extension; Carleman class of holomorphic functions; division theorem
UR - http://eudml.org/doc/208887
ER -
References
top- [A1] E. Amar, Cohomologie complexe et applications, J. London Math. Soc. (2) 29 (1984), 127-140.
- [A2] E. Amar, Non-division dans , Math. Z. 188 (1985), 493-511.
- [DBT] P. de Bartolomeis G. Tomassini, Finitely generated ideals in , Adv. in Math. 46 (1982), 162-170. Zbl0499.32012
- [BBMT] J. Bonet, R. W. Braun, R. Meise & B. A. Taylor, Whitney's extension theorem for nonquasianalytic functions, Studia Math. 99 (1991), 156-184. Zbl0738.46009
- [B] J. Bruna, An extension theorem of Whitney type for non quasi-analytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505. Zbl0419.26010
- [CC1] J. Chaumat & A.-M. Chollet, Théorème de Whitney dans des classes ultradifférentiables, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 901-906.
- [CC2] J. Chaumat A.-M. Chollet, Noyaux pour résoudre l’équation dans des classes ultradifférentiables sur des compacts irréguliers de , in: Several Complex Variables (Stockholm 1987/1988), Math. Notes 38, Princeton Univ. Press, Princeton, 1993, 205-226.
- [D] E. M. Dynkin, Pseudoanalytic extension of smooth functions. The uniform scale, Amer. Math. Soc. Transl. 115 (1980), 33-58.
- [GS] R. Gay A. Sebbar, Division et extension dans l’algèbre d’un ouvert pseudoconvexe à bord lisse de , Math. Z. 189 (1985), 421-447. Zbl0547.32009
- [G] R. C. Gunning, Introduction to Holomorphic Functions of Several Variables, vol. III: Homological Theory, Wadsworth & Brooks/Cole, Monterey, 1990. Zbl0699.32001
- [M] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, Bombay, 1966. Zbl0177.17902
- [N] A. Nagel, On algebras of holomorphic functions with boundary values, Duke Math. J. 41 (1974), 527-535. Zbl0291.32023
- [Th1] V. Thilliez, Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de , Ann. Polon. Math. 63 (1996), 71-88.
- [Th2] V. Thilliez, Sur les fonctions composées ultradifférentiables, J. Math. Pures Appl. (9) 76 (1997), 499-524.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.