Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de n

Vincent Thilliez

Annales Polonici Mathematici (1996)

  • Volume: 63, Issue: 1, page 71-88
  • ISSN: 0066-2216

Abstract

top
Considering jets, or functions, belonging to some strongly non-quasianalytic Carleman class on compact subsets of n , we extend them to the whole space with a loss of Carleman regularity. This loss is related to geometric conditions refining Łojasiewicz’s “regular separation” or Whitney’s “property (P)”.

How to cite

top

Vincent Thilliez. "Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de $ℝ^n$." Annales Polonici Mathematici 63.1 (1996): 71-88. <http://eudml.org/doc/262539>.

@article{VincentThilliez1996,
author = {Vincent Thilliez},
journal = {Annales Polonici Mathematici},
keywords = {Carleman class; extension theorem; Łojasiewicz inequalities; Whitney regularity; Łojasiewicz’s inequality; non-quasianalytic Carleman classes; Whitney jets; extension; non-quasianalytic function; Carleman regularity},
language = {fre},
number = {1},
pages = {71-88},
title = {Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de $ℝ^n$},
url = {http://eudml.org/doc/262539},
volume = {63},
year = {1996},
}

TY - JOUR
AU - Vincent Thilliez
TI - Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de $ℝ^n$
JO - Annales Polonici Mathematici
PY - 1996
VL - 63
IS - 1
SP - 71
EP - 88
LA - fre
KW - Carleman class; extension theorem; Łojasiewicz inequalities; Whitney regularity; Łojasiewicz’s inequality; non-quasianalytic Carleman classes; Whitney jets; extension; non-quasianalytic function; Carleman regularity
UR - http://eudml.org/doc/262539
ER -

References

top
  1. [Bi] E. Bierstone, Differentiable functions, Bol. Soc. Brasil. Mat. 11 (1980), 139-190. Zbl0584.58006
  2. [BBMT] J. Bonet, R. W. Braun, R. Meise and B. A. Taylor, Whitney's extension theorem for nonquasianalytic functions, Studia Math. 99 (1991), 156-184. Zbl0738.46009
  3. [B] J. Bruna, An extension theorem of Whitney type for non-quasianalytic classes of functions, J. London Math. Soc. 22 (1980), 495-505. Zbl0419.26010
  4. [CC] J. Chaumat et A.-M. Chollet, Théorème de Whitney dans des classes ultra différentiables, Publ. Inst. Rech. Math. Lille 28 (1992), VIII.1-VIII.31 et C. R. Acad. Sci. Paris 315 (1992), 901-906. 
  5. [Dr] B. Droste, Holomorphic approximation of ultradifferentiable functions, Math. Ann. 257 (1981), 293-316. Zbl0463.32007
  6. [L] A. Lambert, Quelques théorèmes de décomposition des ultradistributions, Ann. Inst. Fourier (Grenoble) 29 (3) (1979), 57-100. Zbl0396.46038
  7. [M] B. Malgrange, Ideals of Differentiable Functions, Tata Institute for Fundamental Research, Bombay and Oxford Univ. Press, 1966. Zbl0177.17902
  8. [P] W. Pleśniak, Extension and polynomial approximation of ultradifferentiable functions in N , Bull. Soc. Roy. Sci. Liège 63 (1994), 393-402. Zbl0816.26009
  9. [T] J.-C. Tougeron, Idéaux de fonctions différentiables, Ergeb. Math. Grenzgeb. 71, Springer, 1972. Zbl0251.58001
  10. [Wa] K. Wachta, Prolongation des fonctions C , Bull. Polish Acad. Sci. Math. 31 (1983), 245-248. Zbl0595.58004
  11. [W] H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math. 35 (1934), 482-485. Zbl60.0217.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.