Connection matrix pairs
Banach Center Publications (1999)
- Volume: 47, Issue: 1, page 219-232
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [C] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. in Math. 38, AMS, Providence, 1978.
- [Fr] J. Franks, Homology and Dynamical Systems, CBMS Reg. Conf. Ser. in Math. 49, AMS, Providence, 1982.
- [F1] R. Franzosa, The Connection Matrix Theory for Morse Decompositions, Trans. AMS 311 (1989), 561-592. Zbl0689.58030
- [F2] R. Franzosa, The Continuation Theory For Morse Decompositions and Connection Matrices, Trans. AMS 310 (1988), 781-803. Zbl0708.58021
- [FM] R. Franzosa and K. Mischaikow, The Connection Matrix Theory for Semiflows on (Not Necessarily Locally Compact) Metric Spaces, J. Differential Equations 71 (1988), 270-287. Zbl0676.54048
- [G1] L. Górniewicz, Homological Methods in Fixed Point Theory of Multi-valued Maps, Dissertationes Mathematicae 129 (1976). Zbl0324.55002
- [G2] L. Górniewicz, Topological Degree of Morphisms and its Applications to Differential Inclusions, Raccolta di Seminari del Dipartimento di Matematica dell'Università degli Studi della Calabria 5 (1983).
- [KM1] T. Kaczynski and M. Mrozek, Conley Index for Discrete Multi-valued Dynamical Systems, Top. App. 65 (1995), 83-96. Zbl0843.54042
- [KM2] T. Kaczynski and M. Mrozek, Stable Index Pairs for Discrete Dynamical Systems, preprint, 1994.
- [R1] D. Richeson, Connection Matrix Pairs for the Discrete Conley Index, preprint.
- [R2] D. Richeson, Morse Decompositions and Connection Matrix Pairs For Multi-valued Maps, preprint.