Modular vector fields and Batalin-Vilkovisky algebras

Yvette Kosmann-Schwarzbach

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 109-129
  • ISSN: 0137-6934

Abstract

top
We show that a modular class arises from the existence of two generating operators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P) such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A whose d P -cohomology class is well-defined. We give simple proofs of its properties. The modular class of an orientable Poisson manifold is an example. We analyse the relationships between generating operators of the Gerstenhaber algebra of a Lie algebroid, right actions on the elements of degree 0, and left actions on the elements of top degree. We show that the modular class of a triangular Lie bialgebroid coincides with the characteristic class of a Lie algebroid with representation on a line bundle.

How to cite

top

Kosmann-Schwarzbach, Yvette. "Modular vector fields and Batalin-Vilkovisky algebras." Banach Center Publications 51.1 (2000): 109-129. <http://eudml.org/doc/209022>.

@article{Kosmann2000,
abstract = {We show that a modular class arises from the existence of two generating operators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P) such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A whose $d_\{P\}$-cohomology class is well-defined. We give simple proofs of its properties. The modular class of an orientable Poisson manifold is an example. We analyse the relationships between generating operators of the Gerstenhaber algebra of a Lie algebroid, right actions on the elements of degree 0, and left actions on the elements of top degree. We show that the modular class of a triangular Lie bialgebroid coincides with the characteristic class of a Lie algebroid with representation on a line bundle.},
author = {Kosmann-Schwarzbach, Yvette},
journal = {Banach Center Publications},
keywords = {modular vector field; Batalin-Vilkovisky algebra; triangular Lie bialgebroid; orientable Poisson manifold; generating operators; Gerstenhaber algebra; right actions; left actions; characteristic class of a Lie algebroid},
language = {eng},
number = {1},
pages = {109-129},
title = {Modular vector fields and Batalin-Vilkovisky algebras},
url = {http://eudml.org/doc/209022},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Kosmann-Schwarzbach, Yvette
TI - Modular vector fields and Batalin-Vilkovisky algebras
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 109
EP - 129
AB - We show that a modular class arises from the existence of two generating operators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P) such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A whose $d_{P}$-cohomology class is well-defined. We give simple proofs of its properties. The modular class of an orientable Poisson manifold is an example. We analyse the relationships between generating operators of the Gerstenhaber algebra of a Lie algebroid, right actions on the elements of degree 0, and left actions on the elements of top degree. We show that the modular class of a triangular Lie bialgebroid coincides with the characteristic class of a Lie algebroid with representation on a line bundle.
LA - eng
KW - modular vector field; Batalin-Vilkovisky algebra; triangular Lie bialgebroid; orientable Poisson manifold; generating operators; Gerstenhaber algebra; right actions; left actions; characteristic class of a Lie algebroid
UR - http://eudml.org/doc/209022
ER -

References

top
  1. [1] K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, Pitman Res. Notes in Math. 174, Longman, Harlow, 1988. Zbl0671.58001
  2. [2] J.-L. Brylinski, A differential complex for Poisson manifolds, J. Diff. Geom. 28 (1988), 93-114. Zbl0634.58029
  3. [3] J.-L. Brylinski and G. Zuckerman, The outer derivation of a complex Poisson manifold, J. reine angew. Math. 506 (1999), 181-189. Zbl0919.58029
  4. [4] P. Cartier, Some fundamental techniques in the theory of integrable systems, in: Lectures on Integrable Systems, O. Babelon, P. Cartier and Y. Kosmann-Schwarzbach, eds., World Scientific, Singapore, 1994, 1-41. 
  5. [5] J.-P. Dufour and A. Haraki, Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci. Paris 312, Série I (1991), 137-140. Zbl0719.58001
  6. [6] S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quarterly J. Math., to appear. Zbl0968.58014
  7. [7] M. Gerstenhaber and S. D. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, Contemp. Math. 134 (1992), M. Gerstenhaber and J. D. Stasheff, eds., 51-92. Zbl0788.17009
  8. [8] J. Grabowski, G. Marmo and A. M. Perelomov, Poisson structures: towards a classification, Mod. Phys. Lett. A8 (1993), 1719-1733. Zbl1020.37529
  9. [9] J. Huebschmann, Poisson cohomology and quantization, J. reine angew. Math. 408 (1990), 459-489. 
  10. [10] J. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. reine angew. Math. 510 (1999), 103-159. Zbl1034.53083
  11. [11] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Ann. Inst. Fourier 48 (1998), 425-440. Zbl0973.17027
  12. [12] J. Huebschmann, Differential Batalin-Vilkovisky algebras arrising from twilled Lie-Rinehart algebras, this volume. Zbl1015.17023
  13. [13] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153-165. Zbl0837.17014
  14. [14] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré A53 (1990), 35-81, and Dualization and deformation of Lie brackets on Poisson manifolds, in: Differential Geometry and its Applications, J. Janyška and D. Krupka, eds., World Scientific, Singapore, 1990, 79-84. 
  15. [15] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: Astérisque, hors série, Elie Cartan et les mathématiques d'aujourd'hui, Soc. Math. Fr., 1985, 257-271. 
  16. [16] Z.-J. Liu and P. Xu, On quadratic Poisson structures, Lett. Math. Phys. 26 (1992), 33-42. Zbl0773.58007
  17. [17] K. C. H. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge Univ. Press, Cambridge, 1987. Zbl0683.53029
  18. [18] K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415-452. Zbl0844.22005
  19. [19] Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, Colloq. Publ. 47, Amer. Math. Soc., Providence, RI, 1999. 
  20. [20] C.-M. Marle, The Schouten-Nijenhuis bracket and interior products, J. Geom. Phys. 23 (1997), 350-359. Zbl0934.58002
  21. [21] R. S. Palais, The cohomology of Lie rings, Proc. Symp. Pure Math. 3, Amer. Math. Soc., Providence R.I. 1961, 245-248. Zbl0126.03404
  22. [22] V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras, preprint math.AG/9802006. 
  23. [23] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Birkhäuser, Basel, 1994. 
  24. [24] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394. Zbl0902.58013
  25. [25] A. Weinstein, Poisson geometry, Diff. Geom. Appl. 9 (1998), 213-238. 
  26. [26] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560. Zbl0941.17016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.