Modular vector fields and Batalin-Vilkovisky algebras
Banach Center Publications (2000)
- Volume: 51, Issue: 1, page 109-129
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topKosmann-Schwarzbach, Yvette. "Modular vector fields and Batalin-Vilkovisky algebras." Banach Center Publications 51.1 (2000): 109-129. <http://eudml.org/doc/209022>.
@article{Kosmann2000,
abstract = {We show that a modular class arises from the existence of two generating operators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P) such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A whose $d_\{P\}$-cohomology class is well-defined. We give simple proofs of its properties. The modular class of an orientable Poisson manifold is an example. We analyse the relationships between generating operators of the Gerstenhaber algebra of a Lie algebroid, right actions on the elements of degree 0, and left actions on the elements of top degree. We show that the modular class of a triangular Lie bialgebroid coincides with the characteristic class of a Lie algebroid with representation on a line bundle.},
author = {Kosmann-Schwarzbach, Yvette},
journal = {Banach Center Publications},
keywords = {modular vector field; Batalin-Vilkovisky algebra; triangular Lie bialgebroid; orientable Poisson manifold; generating operators; Gerstenhaber algebra; right actions; left actions; characteristic class of a Lie algebroid},
language = {eng},
number = {1},
pages = {109-129},
title = {Modular vector fields and Batalin-Vilkovisky algebras},
url = {http://eudml.org/doc/209022},
volume = {51},
year = {2000},
}
TY - JOUR
AU - Kosmann-Schwarzbach, Yvette
TI - Modular vector fields and Batalin-Vilkovisky algebras
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 109
EP - 129
AB - We show that a modular class arises from the existence of two generating operators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P) such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A whose $d_{P}$-cohomology class is well-defined. We give simple proofs of its properties. The modular class of an orientable Poisson manifold is an example. We analyse the relationships between generating operators of the Gerstenhaber algebra of a Lie algebroid, right actions on the elements of degree 0, and left actions on the elements of top degree. We show that the modular class of a triangular Lie bialgebroid coincides with the characteristic class of a Lie algebroid with representation on a line bundle.
LA - eng
KW - modular vector field; Batalin-Vilkovisky algebra; triangular Lie bialgebroid; orientable Poisson manifold; generating operators; Gerstenhaber algebra; right actions; left actions; characteristic class of a Lie algebroid
UR - http://eudml.org/doc/209022
ER -
References
top- [1] K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, Pitman Res. Notes in Math. 174, Longman, Harlow, 1988. Zbl0671.58001
- [2] J.-L. Brylinski, A differential complex for Poisson manifolds, J. Diff. Geom. 28 (1988), 93-114. Zbl0634.58029
- [3] J.-L. Brylinski and G. Zuckerman, The outer derivation of a complex Poisson manifold, J. reine angew. Math. 506 (1999), 181-189. Zbl0919.58029
- [4] P. Cartier, Some fundamental techniques in the theory of integrable systems, in: Lectures on Integrable Systems, O. Babelon, P. Cartier and Y. Kosmann-Schwarzbach, eds., World Scientific, Singapore, 1994, 1-41.
- [5] J.-P. Dufour and A. Haraki, Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci. Paris 312, Série I (1991), 137-140. Zbl0719.58001
- [6] S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quarterly J. Math., to appear. Zbl0968.58014
- [7] M. Gerstenhaber and S. D. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, Contemp. Math. 134 (1992), M. Gerstenhaber and J. D. Stasheff, eds., 51-92. Zbl0788.17009
- [8] J. Grabowski, G. Marmo and A. M. Perelomov, Poisson structures: towards a classification, Mod. Phys. Lett. A8 (1993), 1719-1733. Zbl1020.37529
- [9] J. Huebschmann, Poisson cohomology and quantization, J. reine angew. Math. 408 (1990), 459-489.
- [10] J. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. reine angew. Math. 510 (1999), 103-159. Zbl1034.53083
- [11] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Ann. Inst. Fourier 48 (1998), 425-440. Zbl0973.17027
- [12] J. Huebschmann, Differential Batalin-Vilkovisky algebras arrising from twilled Lie-Rinehart algebras, this volume. Zbl1015.17023
- [13] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153-165. Zbl0837.17014
- [14] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré A53 (1990), 35-81, and Dualization and deformation of Lie brackets on Poisson manifolds, in: Differential Geometry and its Applications, J. Janyška and D. Krupka, eds., World Scientific, Singapore, 1990, 79-84.
- [15] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: Astérisque, hors série, Elie Cartan et les mathématiques d'aujourd'hui, Soc. Math. Fr., 1985, 257-271.
- [16] Z.-J. Liu and P. Xu, On quadratic Poisson structures, Lett. Math. Phys. 26 (1992), 33-42. Zbl0773.58007
- [17] K. C. H. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge Univ. Press, Cambridge, 1987. Zbl0683.53029
- [18] K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415-452. Zbl0844.22005
- [19] Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, Colloq. Publ. 47, Amer. Math. Soc., Providence, RI, 1999.
- [20] C.-M. Marle, The Schouten-Nijenhuis bracket and interior products, J. Geom. Phys. 23 (1997), 350-359. Zbl0934.58002
- [21] R. S. Palais, The cohomology of Lie rings, Proc. Symp. Pure Math. 3, Amer. Math. Soc., Providence R.I. 1961, 245-248. Zbl0126.03404
- [22] V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras, preprint math.AG/9802006.
- [23] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Birkhäuser, Basel, 1994.
- [24] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394. Zbl0902.58013
- [25] A. Weinstein, Poisson geometry, Diff. Geom. Appl. 9 (1998), 213-238.
- [26] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560. Zbl0941.17016
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.