Nonlocal quadratic evolution problems
Piotr Biler; Wojbor Woyczyński
Banach Center Publications (2000)
- Volume: 52, Issue: 1, page 11-24
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [BPFS] C. Bardos, P. Penel, U. Frisch and P. L. Sulem, Modified dissipativity for a non-linear evolution equation arising in turbulence, Arch. Rat. Mech. Anal. 71 (1979), 237-256. Zbl0421.35037
- [B1] P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles, III, Colloq. Math. 68 (1995), 229-239. Zbl0836.35076
- [B2] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math. 114 (1995), 181-205. Zbl0829.35044
- [B3] P. Biler, Local and global solvability of parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl. 8 (1998), 715-743. Zbl0913.35021
- [BFW1] P. Biler, T. Funaki and W. A. Woyczyński, Fractal Burgers equations, J. Diff. Eq. 148 (1998), 9-46. Zbl0911.35100
- [BFW2] P. Biler, T. Funaki and W. A. Woyczyński, Interacting particle approximation for nonlocal quadratic evolution problems, Probab. Math. Statist. 19 (1999), 321-340. Zbl0985.60091
- [BHN] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Analysis T.M.A. 23 (1994), 1189-1209. Zbl0814.35054
- [BN] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math. 66 (1993), 131-145. Zbl0818.35046
- [BW] P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math. 59 (1999), 845-869. Zbl0940.35035
- [BT] M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation, Ann. Appl. Prob. 6 (1996), 818-861. Zbl0860.60038
- [C] M. Cannone, Ondelettes, paraproduits et Navier-Stokes, Diderot Editeur; Arts et Sciences, Paris, 1995.
- [FW] T. Funaki and W. A. Woyczyński, Interacting particle approximation for fractal Burgers equation, in: Stochastic Processes and related topics, A volume in memory of S. Cambanis, I. Karatzas, B. Rajput and M. Taqqu, Eds., Birkhäuser, Boston 1998, 141-166. Zbl0931.60087
- [GMO] Y. Giga, T. Miyakawa and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rat. Mech. Anal. 104 (1988), 223-250. Zbl0666.76052
- [G] J. Goodman, Convergence of the random vortex method, Comm. Pure Appl. Math. 40 (1987), 189-220. Zbl0635.35077
- [GK] E. Gutkin and M. Kac, Propagation of chaos and the Burgers equation, SIAM J. Appl. Math. 43 (1983), 971-980. Zbl0554.35104
- [HMV] M. A. Herrero, E. Medina and J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity 10 (1997), 1739-1754. Zbl0909.35071
- [KO] S. Kotani and H. Osada, Propagation of chaos for Burgers' equation, J. Math. Soc. Japan 37 (1985), 275-294. Zbl0603.60072
- [McK] H. P. McKean, Propagation of chaos for a class of non-linear parabolic equations, in: Stochastic differential equations VII, Lecture Series in Differential Equations, Catholic University, Washington D.C., 1967, 177-194.
- [O] H. Osada, Propagation of chaos for two dimensional Navier-Stokes equation, Proc. Japan Ac. 62A (1986), 8-11, and Taniguchi Symp. PMMP, Katata, 1985, 303-334.
- [SZF] M. F. Shlesinger, G. M. Zaslavsky and U. Frisch, Eds., Lévy Flights and Related Topics in Physics, Lecture Notes in Phys. 450, Springer-Verlag, Berlin, 1995.
- [Sz] A. S. Sznitman, Topics in propagation of chaos, in: École d'été de St. Flour, XIX - 1989, Lecture Notes in Math. 1464, Springer-Verlag, Berlin, 1991, 166-251.
- [W] W. A. Woyczyński, Burgers-KPZ Turbulence, Göttingen Lectures, Lecture Notes in Math. 1700, Springer-Verlag, Berlin, 1998.