Existence and nonexistence of solutions for a model of gravitational interaction of particles, III
Colloquium Mathematicae (1995)
- Volume: 68, Issue: 2, page 229-239
- ISSN: 0010-1354
Access Full Article
topHow to cite
topBiler, Piotr. "Existence and nonexistence of solutions for a model of gravitational interaction of particles, III." Colloquium Mathematicae 68.2 (1995): 229-239. <http://eudml.org/doc/210307>.
@article{Biler1995,
author = {Biler, Piotr},
journal = {Colloquium Mathematicae},
keywords = {blowing up solutions; parabolic-elliptic system; nonlinear no-flux condition},
language = {eng},
number = {2},
pages = {229-239},
title = {Existence and nonexistence of solutions for a model of gravitational interaction of particles, III},
url = {http://eudml.org/doc/210307},
volume = {68},
year = {1995},
}
TY - JOUR
AU - Biler, Piotr
TI - Existence and nonexistence of solutions for a model of gravitational interaction of particles, III
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 2
SP - 229
EP - 239
LA - eng
KW - blowing up solutions; parabolic-elliptic system; nonlinear no-flux condition
UR - http://eudml.org/doc/210307
ER -
References
top- [1] J. Aguirre and M. Escobedo, On the blow-up of solutions of a convective reaction-diffusion equation, Proc. Roy. Soc. Edinburgh 123A (1993), 433-460. Zbl0801.35038
- [2] P. Baras et M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), 111-149. Zbl0582.35060
- [3] P. Baras et M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185-212. Zbl0599.35073
- [4] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal. 19 (1992), 1121-1136. Zbl0781.35025
- [5] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, preprint, 1994.
- [6] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Anal. 23 (1994), 1189-1209. Zbl0814.35054
- [7] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297-308. Zbl0832.35015
- [8] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, ibid. 66 (1993), 131-145. Zbl0818.35046
- [9] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. Zbl0817.35041
- [10] Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, in: Probability Measures on Groups VIII, H. Heyer (ed.), Lecture Notes in Math. 1210, Springer, Berlin, 1986, 241-284.
- [11] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319. Zbl0585.35051
- [12] Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, ibid. 42 (1989), 845-884. Zbl0703.35020
- [13] O. Kavian, A remark on the blowing-up solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), 193-203. Zbl0638.35043
- [14] A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. Zbl0754.35142
- [15] A. A. Lacey and D. E. Tzanetis, Global unbounded solutions to a parabolic equation, J. Differential Equations 101 (1993), 80-102. Zbl0799.35123
- [16] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Springer, New York, 1994.
- [17] R. McEliece, The Theory of Information and Coding, Encyclopedia Math. Appl. 3, Addison-Wesley, Reading, 1977.
- [18] T. Nadzieja, A model of radially symmetric cloud of self-attracting particles, Applicationes Math., to appear. Zbl0839.35110
Citations in EuDML Documents
top- Piotr Biler, Wojbor Woyczyński, Nonlocal quadratic evolution problems
- Piotr Biler, Tadeusz Nadzieja, Growth and accretion of mass in an astrophysical model, II
- Piotr Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation
- Andrzej Raczyński, On a nonlocal elliptic problem
- Piotr Biler, Growth and accretion of mass in an astrophysical model
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.