Existence and nonexistence of solutions for a model of gravitational interaction of particles, III

Piotr Biler

Colloquium Mathematicae (1995)

  • Volume: 68, Issue: 2, page 229-239
  • ISSN: 0010-1354

How to cite

top

Biler, Piotr. "Existence and nonexistence of solutions for a model of gravitational interaction of particles, III." Colloquium Mathematicae 68.2 (1995): 229-239. <http://eudml.org/doc/210307>.

@article{Biler1995,
author = {Biler, Piotr},
journal = {Colloquium Mathematicae},
keywords = {blowing up solutions; parabolic-elliptic system; nonlinear no-flux condition},
language = {eng},
number = {2},
pages = {229-239},
title = {Existence and nonexistence of solutions for a model of gravitational interaction of particles, III},
url = {http://eudml.org/doc/210307},
volume = {68},
year = {1995},
}

TY - JOUR
AU - Biler, Piotr
TI - Existence and nonexistence of solutions for a model of gravitational interaction of particles, III
JO - Colloquium Mathematicae
PY - 1995
VL - 68
IS - 2
SP - 229
EP - 239
LA - eng
KW - blowing up solutions; parabolic-elliptic system; nonlinear no-flux condition
UR - http://eudml.org/doc/210307
ER -

References

top
  1. [1] J. Aguirre and M. Escobedo, On the blow-up of solutions of a convective reaction-diffusion equation, Proc. Roy. Soc. Edinburgh 123A (1993), 433-460. Zbl0801.35038
  2. [2] P. Baras et M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), 111-149. Zbl0582.35060
  3. [3] P. Baras et M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185-212. Zbl0599.35073
  4. [4] P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal. 19 (1992), 1121-1136. Zbl0781.35025
  5. [5] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, preprint, 1994. 
  6. [6] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Anal. 23 (1994), 1189-1209. Zbl0814.35054
  7. [7] P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297-308. Zbl0832.35015
  8. [8] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, ibid. 66 (1993), 131-145. Zbl0818.35046
  9. [9] P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334. Zbl0817.35041
  10. [10] Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, in: Probability Measures on Groups VIII, H. Heyer (ed.), Lecture Notes in Math. 1210, Springer, Berlin, 1986, 241-284. 
  11. [11] Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319. Zbl0585.35051
  12. [12] Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, ibid. 42 (1989), 845-884. Zbl0703.35020
  13. [13] O. Kavian, A remark on the blowing-up solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc. 299 (1987), 193-203. Zbl0638.35043
  14. [14] A. Krzywicki and T. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math. 50 (1992), 105-107. Zbl0754.35142
  15. [15] A. A. Lacey and D. E. Tzanetis, Global unbounded solutions to a parabolic equation, J. Differential Equations 101 (1993), 80-102. Zbl0799.35123
  16. [16] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Springer, New York, 1994. 
  17. [17] R. McEliece, The Theory of Information and Coding, Encyclopedia Math. Appl. 3, Addison-Wesley, Reading, 1977. 
  18. [18] T. Nadzieja, A model of radially symmetric cloud of self-attracting particles, Applicationes Math., to appear. Zbl0839.35110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.