Page 1 Next

Displaying 1 – 20 of 32

Showing per page

A class of nonlocal parabolic problems occurring in statistical mechanics

Piotr Biler, Tadeusz Nadzieja (1993)

Colloquium Mathematicae

We consider parabolic equations with nonlocal coefficients obtained from the Vlasov-Fokker-Planck equations with potentials. This class of equations includes the classical Debye system from electrochemistry as well as an evolution model of self-attracting clusters under friction and fluctuations. The local in time existence of solutions to these equations (with no-flux boundary conditions) and properties of stationary solutions are studied.

A Coherent Derivation of an Average Ion Model Including the Evolution of Correlations Between Different Shells

Daniel Bouche, Alain Decoster, Laurent Desvillettes, Valeria Ricci (2013)

MathematicS In Action

We propose in this short note a method enabling to write in a systematic way a set of refined equations for average ion models in which correlations between populations are taken into account, starting from a microscopic model for the evolution of the electronic configuration probabilities. Numerical simulations illustrating the improvements with respect to standard average ion models are presented at the end of the paper.

A kinetic equation for granular media

Dario Benedetto, Emanuele Caglioti, Mario Pulvirenti (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this short note we correct a conceptual error in the heuristic derivation of a kinetic equation used for the description of a one-dimensional granular medium in the so called quasi-elastic limit, presented by the same authors in reference[1]. The equation we derived is however correct so that, the rigorous analysis on this equation, which constituted the main purpose of that paper, remains unchanged.

Asymptotic self-similar blow-up for a model of aggregation

Ignacio Guerra (2004)

Banach Center Publications

In this article we consider a system of equations that describes a class of mass-conserving aggregation phenomena, including gravitational collapse and bacterial chemotaxis. In spatial dimensions strictly larger than two, and under the assumptions of radial symmetry, it is known that this system has at least two stable mechanisms of singularity formation (see e.g. M. P. Brenner et al. 1999, Nonlinearity 12, 1071-1098); one type is self-similar, and may be viewed as a trade-off between diffusion...

Existence and nonexistence of solutions for a model of gravitational interaction of particles, II

Piotr Biler, Danielle Hilhorst, Tadeusz Nadzieja (1994)

Colloquium Mathematicae

We study the existence and nonexistence in the large of radial solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles. The blow-up of solutions defined in the n-dimensional ball with large initial data is connected with the nonexistence of radial stationary solutions with a large mass.

Existence of solutions for a model of self-gravitating particles with external potential

Andrzej Raczyński (2004)

Banach Center Publications

We study the existence of solutions to a nonlinear parabolic equation describing the temporal evolution of a cloud of self-gravitating particles with a given external potential. The initial data are in spaces of (generalized) pseudomeasures. We prove existence of local and global-in-time solutions, and also a kind of stability of global solutions.

Gelation in coagulation and fragmentation models.

Miguel Escobedo (2002)


We first present very elementary relations between climate and aerosols. The we introduce the homogeneous coagulation equation as a simple model to describe systems of merging particles like polymers or aerosols. We next give a recent result about gelation of solutions. We end with some related open questions.

Global existence versus blow up for some models of interacting particles

Piotr Biler, Lorenzo Brandolese (2006)

Colloquium Mathematicae

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.

Growth and accretion of mass in an astrophysical model

Piotr Biler (1995)

Applicationes Mathematicae

We study asymptotic behavior of radial solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles. In particular, we consider stationary solutions in balls and in the whole space, self-similar solutions defined globally in time, blowing up self-similar solutions, and singularities of solutions that blow up in a finite time.

Growth and accretion of mass in an astrophysical model, II

Piotr Biler, Tadeusz Nadzieja (1995)

Applicationes Mathematicae

Radially symmetric solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles in a bounded container are studied. Conditions ensuring either global-in-time existence of solutions or their finite time blow up are given.

Currently displaying 1 – 20 of 32

Page 1 Next