A note on geodesic mappings of pseudosymmetric Riemannian manifolds

Filip Defever; Ryszard Deszcz

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 2, page 313-319
  • ISSN: 0010-1354

How to cite

top

Defever, Filip, and Deszcz, Ryszard. "A note on geodesic mappings of pseudosymmetric Riemannian manifolds." Colloquium Mathematicae 62.2 (1991): 313-319. <http://eudml.org/doc/210118>.

@article{Defever1991,
author = {Defever, Filip, Deszcz, Ryszard},
journal = {Colloquium Mathematicae},
keywords = {pseudosymmetric Riemannian manifold; geodesic mapping},
language = {eng},
number = {2},
pages = {313-319},
title = {A note on geodesic mappings of pseudosymmetric Riemannian manifolds},
url = {http://eudml.org/doc/210118},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Defever, Filip
AU - Deszcz, Ryszard
TI - A note on geodesic mappings of pseudosymmetric Riemannian manifolds
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 2
SP - 313
EP - 319
LA - eng
KW - pseudosymmetric Riemannian manifold; geodesic mapping
UR - http://eudml.org/doc/210118
ER -

References

top
  1. [1] A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39-59. Zbl0534.53019
  2. [2] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65. Zbl0678.53022
  3. [3] R. Deszcz, On pseudosymmetric warped product manifolds, J. Geom., to appear. Zbl0843.53011
  4. [4] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322. Zbl0633.53031
  5. [5] R. Deszcz and M. Hotloś, On geodesic mappings in pseudosymmetric manifolds, ibid. 16 (1988), 251-262. Zbl0668.53007
  6. [6] R. Deszcz and M. Hotloś, Notes on pseudosymmetric manifolds admitting special geodesic mappings, Soochow J. Math. 15 (1989), 19-27. Zbl0696.53014
  7. [7] R. Deszcz, L. Verstraelen and L. Vrancken, On the symmetry of warped product spacetimes, Gen. Relativity Gravitation, in print. Zbl0723.53009
  8. [8] J. Mikesh, Geodesic mappings of special Riemannian spaces, in: Topics in Differential Geometry (Hajduszoboszló 1984), Colloq. Math. Soc. János Bolyai 46, Vol. II, North-Holland, Amsterdam 1988, 793-813. 
  9. [9] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom. 17 (1982), 531-582. Zbl0508.53025
  10. [10] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. II. Global versions, Geom. Dedicata 19 (1985), 65-108. Zbl0612.53023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.