A note on geodesic mappings of pseudosymmetric Riemannian manifolds
Colloquium Mathematicae (1991)
- Volume: 62, Issue: 2, page 313-319
- ISSN: 0010-1354
Access Full Article
topHow to cite
topReferences
top- [1] A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39-59. Zbl0534.53019
- [2] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65. Zbl0678.53022
- [3] R. Deszcz, On pseudosymmetric warped product manifolds, J. Geom., to appear. Zbl0843.53011
- [4] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322. Zbl0633.53031
- [5] R. Deszcz and M. Hotloś, On geodesic mappings in pseudosymmetric manifolds, ibid. 16 (1988), 251-262. Zbl0668.53007
- [6] R. Deszcz and M. Hotloś, Notes on pseudosymmetric manifolds admitting special geodesic mappings, Soochow J. Math. 15 (1989), 19-27. Zbl0696.53014
- [7] R. Deszcz, L. Verstraelen and L. Vrancken, On the symmetry of warped product spacetimes, Gen. Relativity Gravitation, in print. Zbl0723.53009
- [8] J. Mikesh, Geodesic mappings of special Riemannian spaces, in: Topics in Differential Geometry (Hajduszoboszló 1984), Colloq. Math. Soc. János Bolyai 46, Vol. II, North-Holland, Amsterdam 1988, 793-813.
- [9] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom. 17 (1982), 531-582. Zbl0508.53025
- [10] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. II. Global versions, Geom. Dedicata 19 (1985), 65-108. Zbl0612.53023