A note on geodesic mappings of pseudosymmetric Riemannian manifolds

Filip Defever; Ryszard Deszcz

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 2, page 313-319
  • ISSN: 0010-1354

How to cite

top

Defever, Filip, and Deszcz, Ryszard. "A note on geodesic mappings of pseudosymmetric Riemannian manifolds." Colloquium Mathematicae 62.2 (1991): 313-319. <http://eudml.org/doc/210118>.

@article{Defever1991,
author = {Defever, Filip, Deszcz, Ryszard},
journal = {Colloquium Mathematicae},
keywords = {pseudosymmetric Riemannian manifold; geodesic mapping},
language = {eng},
number = {2},
pages = {313-319},
title = {A note on geodesic mappings of pseudosymmetric Riemannian manifolds},
url = {http://eudml.org/doc/210118},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Defever, Filip
AU - Deszcz, Ryszard
TI - A note on geodesic mappings of pseudosymmetric Riemannian manifolds
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 2
SP - 313
EP - 319
LA - eng
KW - pseudosymmetric Riemannian manifold; geodesic mapping
UR - http://eudml.org/doc/210118
ER -

References

top
  1. [1] A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39-59. Zbl0534.53019
  2. [2] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65. Zbl0678.53022
  3. [3] R. Deszcz, On pseudosymmetric warped product manifolds, J. Geom., to appear. Zbl0843.53011
  4. [4] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322. Zbl0633.53031
  5. [5] R. Deszcz and M. Hotloś, On geodesic mappings in pseudosymmetric manifolds, ibid. 16 (1988), 251-262. Zbl0668.53007
  6. [6] R. Deszcz and M. Hotloś, Notes on pseudosymmetric manifolds admitting special geodesic mappings, Soochow J. Math. 15 (1989), 19-27. Zbl0696.53014
  7. [7] R. Deszcz, L. Verstraelen and L. Vrancken, On the symmetry of warped product spacetimes, Gen. Relativity Gravitation, in print. Zbl0723.53009
  8. [8] J. Mikesh, Geodesic mappings of special Riemannian spaces, in: Topics in Differential Geometry (Hajduszoboszló 1984), Colloq. Math. Soc. János Bolyai 46, Vol. II, North-Holland, Amsterdam 1988, 793-813. 
  9. [9] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom. 17 (1982), 531-582. Zbl0508.53025
  10. [10] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. II. Global versions, Geom. Dedicata 19 (1985), 65-108. Zbl0612.53023

NotesEmbed ?

top

You must be logged in to post comments.