Curvature properties of certain compact pseudosymmetric manifolds

Ryszard Deszcz

Colloquium Mathematicae (1993)

  • Volume: 65, Issue: 1, page 139-147
  • ISSN: 0010-1354

How to cite

top

Deszcz, Ryszard. "Curvature properties of certain compact pseudosymmetric manifolds." Colloquium Mathematicae 65.1 (1993): 139-147. <http://eudml.org/doc/210197>.

@article{Deszcz1993,
author = {Deszcz, Ryszard},
journal = {Colloquium Mathematicae},
keywords = {pseudosymmetric Riemannian manifold; warped product},
language = {eng},
number = {1},
pages = {139-147},
title = {Curvature properties of certain compact pseudosymmetric manifolds},
url = {http://eudml.org/doc/210197},
volume = {65},
year = {1993},
}

TY - JOUR
AU - Deszcz, Ryszard
TI - Curvature properties of certain compact pseudosymmetric manifolds
JO - Colloquium Mathematicae
PY - 1993
VL - 65
IS - 1
SP - 139
EP - 147
LA - eng
KW - pseudosymmetric Riemannian manifold; warped product
UR - http://eudml.org/doc/210197
ER -

References

top
  1. [1] A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39-59. Zbl0534.53019
  2. [2] A. L. Besse, Einstein Manifolds, Springer, Berlin 1987. Zbl0613.53001
  3. [3] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. Zbl0191.52002
  4. [4] F. Defever and R. Deszcz, On semi-Riemannian manifolds satisfying the condition R·R = Q(S,R), in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore 1991, 108-130. 
  5. [5] F. Defever and R. Deszcz, A note on geodesic mappings of pseudosymmetric Riemannian manifolds, Colloq. Math. 62 (1991), 313-319. Zbl0810.53008
  6. [6] F. Defever and R. Deszcz, On warped product manifolds satisfying a certain curvature condition, Atti Acad. Peloritana Cl. Sci. Fis. Mat. Natur., in print. Zbl0780.53017
  7. [7] F. Defever and R. Deszcz, On Riemannian manifolds satisfying a certain curvature condition imposed on the Weyl curvature tensor, Acta Univ. Palackiensis, in print. Zbl0796.53016
  8. [8] J. Deprez, R. Deszcz and L. Verstraelen, Pseudosymmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kählerian manifolds, Ann. Fac. Sci. Toulouse 9 (1988), 183-192. Zbl0668.53010
  9. [9] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65. Zbl0678.53022
  10. [10] R. Deszcz, Notes on totally umbilical submanifolds, in: Geometry and Topology of Submanifolds, Luminy, May 1987, World Sci., Singapore 1989, 89-97. Zbl0735.53042
  11. [11] R. Deszcz, Examples of four-dimensional Riemannian manifolds satisfying some pseudosymmetry curvature conditions, in: Geometry and Topology of Submanifolds, II, Avignon, May 1988, World Sci., Singapore 1990, 134-143. 
  12. [12] R. Deszcz, On conformally flat Riemannian manifold satisfying certain curvature conditions, Tensor (N.S.) 49 (1990), 134-145. Zbl0742.53006
  13. [13] R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudo-symmetry curvature conditions, Colloq. Math. 62 (1991), 103-120. Zbl0738.53008
  14. [14] R. Deszcz, Pseudosymmetry curvature conditions imposed on the shape operators of hypersurfaces in the affine space, Results in Math. 20 (1991), 600-621. Zbl0752.53009
  15. [15] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322. Zbl0633.53031
  16. [16] R. Deszcz and W. Grycak, On manifolds satisfying some curvature conditions, Colloq. Math. 57 (1989), 89-92. Zbl0698.53011
  17. [17] R. Deszcz and W. Grycak, On certain curvature conditions on Riemannian manifolds, ibid. 58 (1990), 259-268. Zbl0707.53019
  18. [18] R. Deszcz and M. Hotloś, On geodesic mappings in pseudosymmetric manifolds, Bull. Inst. Math. Acad. Sinica 16 (1988), 251-262. Zbl0668.53007
  19. [19] R. Deszcz and L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore 1991, 131-147. 
  20. [20] R. Deszcz, L. Verstraelen and L. Vrancken, On the symmetry of warped product spacetimes, Gen. Rel. Grav. 23 (1991), 671-681. Zbl0723.53009
  21. [21] G. I. Kruchkovich, On semi-reducible Riemannian spaces, Dokl. Akad. Nauk SSSR 115 (1957), 862-865 (in Russian). Zbl0080.37301
  22. [22] J. Mikesh, Geodesic mappings of special Riemannian spaces, in: Topics in Differential Geometry (Hajdoszoboszló 1984), Colloq. Math. Soc. János Bolyai 46, Vol. II, North-Holland, Amsterdam 1988, 793-813. 
  23. [23] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340. Zbl0115.39302
  24. [24] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom. 17 (1982), 531-582. Zbl0508.53025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.