Factorisation without bounded approximate identities

J. Ward

Colloquium Mathematicae (1992)

  • Volume: 63, Issue: 2, page 273-284
  • ISSN: 0010-1354

How to cite

top

Ward, J.. "Factorisation without bounded approximate identities." Colloquium Mathematicae 63.2 (1992): 273-284. <http://eudml.org/doc/210152>.

@article{Ward1992,
author = {Ward, J.},
journal = {Colloquium Mathematicae},
keywords = {bounded approximate identity; Banach algebra; normed space; pseudomeasure spaces; compact abelian group; convolution multiplication; Fourier transform; non locally convex metric space; convolution algebra with factorization},
language = {eng},
number = {2},
pages = {273-284},
title = {Factorisation without bounded approximate identities},
url = {http://eudml.org/doc/210152},
volume = {63},
year = {1992},
}

TY - JOUR
AU - Ward, J.
TI - Factorisation without bounded approximate identities
JO - Colloquium Mathematicae
PY - 1992
VL - 63
IS - 2
SP - 273
EP - 284
LA - eng
KW - bounded approximate identity; Banach algebra; normed space; pseudomeasure spaces; compact abelian group; convolution multiplication; Fourier transform; non locally convex metric space; convolution algebra with factorization
UR - http://eudml.org/doc/210152
ER -

References

top
  1. [1] P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205. Zbl0085.10201
  2. [2] P. C. Curtis Jr. and A. Figà-Talamanca, Factorization theorems for Banach algebras, in: Function Algebras, Scott, Foresman and Co., Chicago 1966, 169-185. 
  3. [3] P. G. Dixon, Factorization and unbounded approximate identities in Banach algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), 557-571. Zbl0723.46034
  4. [4] R. E. Edwards, Lipschitz conditions and lacunarity, J. Austral. Math. Soc. 16 (1973), 272-277. 
  5. [5] R. E. Edwards, Fourier Series: a Modern Introduction, I, II, 2nd ed., Springer, New York 1979, 1982. Zbl0424.42001
  6. [6] H. G. Feichtinger and M. Leinert, Individual factorization in Banach modules, Colloq. Math. 51 (1987), 107-117. Zbl0628.46051
  7. [7] E. Hewitt, The ranges of certain convolution operators, Math. Scand. 15 (1964), 147-155. Zbl0135.36002
  8. [8] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, I, II, Springer, Berlin 1963, 1970. Zbl0115.10603
  9. [9] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York 1968. 
  10. [10] S. M. Khaleelulla, Counterexamples in Topological Vector Spaces, Lecture Notes in Math. 936, Springer, Berlin 1982. Zbl0482.46002
  11. [11] E. Kreysig, Introductory Functional Analysis with Applications, Wiley, New York 1978. 
  12. [12] W. Rudin, Factorization in the group algebra of the real line, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 339-340. Zbl0079.13301
  13. [13] W. Rudin, Representaion of functions by convolutions, J. Math. Mech. 7 (1958), 103-115. Zbl0079.13302
  14. [14] S. Saeki, The L p -conjecture and Young’s inequality, Illinois J. Math. 34 (1990), 614-627. Zbl0701.22003
  15. [15] R. Salem, Sur les transformations des séries de Fourier, Fund. Math. 33 (1945), 108-114. Zbl65.1203.01
  16. [16] H. C. Wang, Homogeneous Banach Algebras, Marcel Dekker, New York 1977. 
  17. [17] A. Wilansky, Functional Analysis, Blaisdell, New York 1964. Zbl0136.10603
  18. [18] G. Willis, Examples of factorisation without bounded approximate identities, preprint, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.