Pseudo-symmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kahlerian manifolds

J. Deprez; R. Deszcz; L. Verstraelen

Annales de la Faculté des sciences de Toulouse : Mathématiques (1988)

  • Volume: 9, Issue: 2, page 183-192
  • ISSN: 0240-2963

How to cite

top

Deprez, J., Deszcz, R., and Verstraelen, L.. "Pseudo-symmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kahlerian manifolds." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.2 (1988): 183-192. <http://eudml.org/doc/73202>.

@article{Deprez1988,
author = {Deprez, J., Deszcz, R., Verstraelen, L.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {pseudo-symmetric Riemannian manifolds; pseudo-symmetric Kaehlerian manifold; hypersurfaces},
language = {eng},
number = {2},
pages = {183-192},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Pseudo-symmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kahlerian manifolds},
url = {http://eudml.org/doc/73202},
volume = {9},
year = {1988},
}

TY - JOUR
AU - Deprez, J.
AU - Deszcz, R.
AU - Verstraelen, L.
TI - Pseudo-symmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kahlerian manifolds
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1988
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 2
SP - 183
EP - 192
LA - eng
KW - pseudo-symmetric Riemannian manifolds; pseudo-symmetric Kaehlerian manifold; hypersurfaces
UR - http://eudml.org/doc/73202
ER -

References

top
  1. [AD] Adamow ( A.), Deszcz ( R.).—On totally umbilical submanifolds of some class Riemannian manifolds, Demonstratio Math., t. 16, 1983, p. 39-59. Zbl0534.53019MR723962
  2. [BVV] Blair ( D.E.), Verheyen ( P.), Verstraelen ( L.). - Hypersurfaces satisfaisant à R C = 0 ou C R = 0, C.R. Acad. Bulgare Sc., t. 37/11, 1984, p. 459-1462. Zbl0579.53007MR837747
  3. [DDV] Deprez ( J.), Deszcz ( R.), Verstraelen ( L.).- On some examples of conformally flat warped products, to appear. MR1007875
  4. [DDVV] Deprez ( J.), Dillen ( F.), Verheyen ( P.), Verstraelen ( L.). — Conditions on the projective curvature tensor of hypersurfaces in Euclidean space, Ann. Fac. Sci. Univ. Paul Sabatier Toulouse, t. VII, 1985, p. 229-249. Zbl0583.53001MR877168
  5. [DG] Deszcz ( R.), Grycak ( W.).— Notes on manifolds satisfying some curvature conditions, Colloquium Math., to appear. Zbl0698.53011MR1028605
  6. [DEP] Deszcz ( R.), Ewert-Krzemieniewski ( S.), Policht ( J.).- On totally umbilical submanifolds of conformally birecurrent manifolds, Colloquium Math., to appear. Zbl0667.53021MR964325
  7. [G] Grycak ( W.).- Riemannian manifolds with a symmetry condition imposed on the second derivative of the conformal curvature tensor, to appear. Zbl0694.53017
  8. [T] Tachibana ( S.).— A theorem on Riemannian manifolds of positive curvature operator, Proc. Japan Acad. Ser. Math. Sci, t. 40, 1974, p. 301-302. Zbl0299.53031MR365415

Citations in EuDML Documents

top
  1. Filip Defever, Leopold Verstraelen, Ryszard Deszcz, On pseudosymmetric para-Kähler manifolds
  2. Ryszard Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudo-symmetry curvature conditions
  3. Ryszard Deszcz, Curvature properties of certain compact pseudosymmetric manifolds
  4. Ryszard Deszcz, Certain curvature characterizations of affine hypersurfaces
  5. Kadri Arslan, Ryszard Deszcz, Şahnur Yaprak, On Weyl pseudosymmetric hypersurfaces
  6. Ryszard Deszcz, Sahnur Yaprak, Curvature properties of Cartan hypersurfaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.