Estimates for the integral means of holomorphic functions on bounded domains in n

Zhangjian Hu

Colloquium Mathematicae (1996)

  • Volume: 69, Issue: 2, page 213-238
  • ISSN: 0010-1354

How to cite

top

Hu, Zhangjian. "Estimates for the integral means of holomorphic functions on bounded domains in $ℂ^{n}$." Colloquium Mathematicae 69.2 (1996): 213-238. <http://eudml.org/doc/210337>.

@article{Hu1996,
abstract = {},
author = {Hu, Zhangjian},
journal = {Colloquium Mathematicae},
keywords = {integral means; weighted Bergman spaces; Bloch functions; strongly pseudoconvex domains},
language = {eng},
number = {2},
pages = {213-238},
title = {Estimates for the integral means of holomorphic functions on bounded domains in $ℂ^\{n\}$},
url = {http://eudml.org/doc/210337},
volume = {69},
year = {1996},
}

TY - JOUR
AU - Hu, Zhangjian
TI - Estimates for the integral means of holomorphic functions on bounded domains in $ℂ^{n}$
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 2
SP - 213
EP - 238
AB -
LA - eng
KW - integral means; weighted Bergman spaces; Bloch functions; strongly pseudoconvex domains
UR - http://eudml.org/doc/210337
ER -

References

top
  1. [1] P. L. Duren, Theory of H p Spaces, Academic Press, New York, 1970. Zbl0215.20203
  2. [2] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765. Zbl0246.30031
  3. [3] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, II, Math. Z. 34 (1932), 403-439. Zbl0003.15601
  4. [4] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962. 
  5. [5] Z. J. Hu, Mean value properties of pluriharmonic functions, Chinese J. Math. 13 (1993), 299-303. 
  6. [6] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982. Zbl0471.32008
  7. [7] S. G. Krantz and D. W. Ma, Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), 145-163. Zbl0628.32006
  8. [8] J. H. Shi, On the rate of growth of the means M p of holomorphic and pluriharmonic functions on bounded symmetric domains of n , J. Math. Anal. Appl. 126 (1987), 161-175. Zbl0625.32003
  9. [9] J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of n , Trans. Amer. Math. Soc. 328 (1991), 619-637. Zbl0761.32001
  10. [10] J. H. Shi, Some results on singular integrals and function spaces in several complex variables, in: Contemp. Math. 142, Amer. Math. Soc., 1993, 75-101. Zbl0798.32006
  11. [11] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton Univ. Press, Princeton, N.J., 1972. Zbl0242.32005
  12. [12] M. Stoll, On the rate of growth of the means M p of holomorphic and pluriharmonic functions on the ball, J. Math. Anal. Appl. 93 (1983), 109-127. 
  13. [13] K. Stroethoff, Besov-type characterizations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), 405-420. Zbl0661.30040
  14. [14] V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, M.I.T. Press, Cambridge, Mass., 1966. 
  15. [15] K. H. Zhu, The Bergman spaces, the Bloch space and Gleason's problem, Trans. Amer. Math. Soc. 309 (1988), 253-265. Zbl0657.32002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.