Tame minimal non-polynomial growth simply connected algebras

Rainer Nörenberg; Andrzej Skowroński

Colloquium Mathematicae (1997)

  • Volume: 73, Issue: 2, page 301-330
  • ISSN: 0010-1354

How to cite

top

Nörenberg, Rainer, and Skowroński, Andrzej. "Tame minimal non-polynomial growth simply connected algebras." Colloquium Mathematicae 73.2 (1997): 301-330. <http://eudml.org/doc/210492>.

@article{Nörenberg1997,
author = {Nörenberg, Rainer, Skowroński, Andrzej},
journal = {Colloquium Mathematicae},
keywords = {tame simply connected algebras; non-polynomial growth; polynomial growth critical algebras; quivers; relations; strongly simply connected pg-critical algebras; tame minimal non-polynomial growth strongly simply connected algebras; numbers of simple modules; tilting classes; Euler forms; Coxeter polynomials; Auslander-Reiten quivers; preinjective components},
language = {eng},
number = {2},
pages = {301-330},
title = {Tame minimal non-polynomial growth simply connected algebras},
url = {http://eudml.org/doc/210492},
volume = {73},
year = {1997},
}

TY - JOUR
AU - Nörenberg, Rainer
AU - Skowroński, Andrzej
TI - Tame minimal non-polynomial growth simply connected algebras
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 2
SP - 301
EP - 330
LA - eng
KW - tame simply connected algebras; non-polynomial growth; polynomial growth critical algebras; quivers; relations; strongly simply connected pg-critical algebras; tame minimal non-polynomial growth strongly simply connected algebras; numbers of simple modules; tilting classes; Euler forms; Coxeter polynomials; Auslander-Reiten quivers; preinjective components
UR - http://eudml.org/doc/210492
ER -

References

top
  1. [1] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450. Zbl0617.16018
  2. [2] M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1-46. 
  3. [3] R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. 27 (1983), 212-220. Zbl0511.16022
  4. [4] K. Bongartz, Algebras and quadratic forms, ibid. 28 (1983), 461-469. 
  5. [5] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984), 117-136. Zbl0537.16024
  6. [6] M. C. R. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145-179. Zbl0612.16013
  7. [7] P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550-565. Zbl0804.16017
  8. [8] Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 242-258. 
  9. [9] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, 1981, 68-105. 
  10. [10] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243. Zbl0516.16023
  11. [11] S. M. Khoroshkin, Irreducible representations of Lorentz groups, Funktsional Anal. i Prilozhen. 15 (2) (1981), 50-60 (in Russian); English transl.: Functional Anal. Appl. 15 (2) (1981), 114-122. Zbl0463.22008
  12. [12] R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth strongly simply connected algebras, in: Representations of Algebras, CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 519-538. Zbl0866.16006
  13. [13] I. Reiten and C. Riedtmann, Skew group algebras in the representation theory of artin algebras, J. Algebra 92 (1985), 224-282. Zbl0549.16017
  14. [14] C. M. Ringel, Tame algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 137-287. 
  15. [15] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  16. [16] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, Amsterdam, 1992. Zbl0818.16009
  17. [17] D. Simson, Triangles of modules and non-polynomial growth, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 33-38. Zbl0842.16010
  18. [18] A. Skowroński, Cycles in module categories, in: Finite Dimensional Algebras and Related Topics, NATO Adv. Sci. Inst. Ser. C 424, Kluwer, Dordrecht, 1994, 309-345. Zbl0819.16013
  19. [19] A. Skowroński, Group algebras of polynomial growth, Manuscripta Math. 59 (1987), 499-516. Zbl0627.16007
  20. [20] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 431-447. Zbl0806.16012
  21. [21] A. Skowroński, Simply connected algebras of polynomial growth, Compositio Math., in press. Zbl0889.16004
  22. [22] L. Unger, The concealed algebras of minimal wild herditary algebras, Bayreuth. Math. Schr. 31 (1990), 145-154. Zbl0739.16012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.