Degenerations for indecomposable modules and tame algebras

Andrzej Skowroński; Grzegorz Zwara

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 2, page 153-180
  • ISSN: 0012-9593

How to cite

top

Skowroński, Andrzej, and Zwara, Grzegorz. "Degenerations for indecomposable modules and tame algebras." Annales scientifiques de l'École Normale Supérieure 31.2 (1998): 153-180. <http://eudml.org/doc/82459>.

@article{Skowroński1998,
author = {Skowroński, Andrzej, Zwara, Grzegorz},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {finite dimensional algebras; indecomposable modules; lengths of chains of degenerations; affine varieties; general linear groups; representation types; strongly simply connected algebras; polynomial growth},
language = {eng},
number = {2},
pages = {153-180},
publisher = {Elsevier},
title = {Degenerations for indecomposable modules and tame algebras},
url = {http://eudml.org/doc/82459},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Skowroński, Andrzej
AU - Zwara, Grzegorz
TI - Degenerations for indecomposable modules and tame algebras
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 2
SP - 153
EP - 180
LA - eng
KW - finite dimensional algebras; indecomposable modules; lengths of chains of degenerations; affine varieties; general linear groups; representation types; strongly simply connected algebras; polynomial growth
UR - http://eudml.org/doc/82459
ER -

References

top
  1. [1] S. ABEASIS and A. DEL FRA, Degenerations for the representations of quiver of type Am (J. Algebra, Vol. 93, 1985, pp. 376-412). Zbl0598.16030MR86j:16028
  2. [2] S. ABEASIS and A. DEL FRA, Degenerations for the representations of an equioriented quiver of type Dm (Adv. Math., Vol. 52, 1984, pp. 81-172). Zbl0537.16025MR86g:16039
  3. [3] I. ASSEM and A. SKOWROŃSKI, On some classes of simply connected algebras (Proc. London Math. Soc., Vol. 56, 1988, pp. 417-450). Zbl0617.16018MR89f:16023a
  4. [4] I. ASSEM and A. SKOWROŃSKI, Minimal representation-infinite coil algebras (Manuscr. Math., Vol. 67, 1990, pp. 305-331). Zbl0696.16023MR91h:16025
  5. [5] I. ASSEM and A. SKOWROŃSKI, Indecomposable modules over multicoil algebras (Math. Scand., Vol. 71, 1992, pp. 131-161). Zbl0796.16014MR94c:16020
  6. [6] I. ASSEM and A. SKOWROŃSKI, Multicoil algebras (CMS Conf. Proc., Vol. 14, 1993, pp. 29-68). Zbl0827.16010
  7. [7] I. ASSEM, A. SKOWROŃSKI and B. TOMÉ, Coil enlargements of algebras (Tsukuba J. Math., Vol. 19, 1995, pp. 453-479). Zbl0860.16014MR97a:16033
  8. [8] M. AUSLANDER, Representation theory of finite dimensional algebras, (Contemp. Math., Vol. 13, 1982, pp. 27-39). Zbl0529.16020MR84b:16031
  9. [9] M. AUSLANDER, M. I. PLATZECK and I. REITEN, Coxeter functors without diagrams (Trans. Amer. Math. Soc., Vol. 250, 1979, pp. 1-12). Zbl0421.16016MR80c:16027
  10. [10] M. AUSLANDER and I. REITEN, Modules determined by their composition factors (Illinois J. Math., Vol. 29, 1985, pp. 289-301). Zbl0539.16011MR86i:16032
  11. [11] K. BONGARTZ, A generalization of theorem of M. Auslander (Bull. London Math. Soc., Vol. 21, 1989, pp. 255-256). Zbl0669.16018MR90b:16031
  12. [12] K. BONGARTZ, On degenerations and extensions of finite dimensional modules (Adv. Math., Vol. 121, 1996, pp. 245-287). Zbl0862.16007MR98e:16012
  13. [13] K. BONGARTZ, Minimal singularities for representations of Dynkin quivers (Comment. Math. Helv., Vol. 69, 1994 pp. 575-611). Zbl0832.16008MR96f:16016
  14. [14] K. BONGARTZ, Degenerations for representations of tame quivers, (Ann. Scient. Ec. Norm. Sup., Vol. 28, 1995, pp. 647-668). Zbl0844.16007MR96i:16020
  15. [15] K. BONGARTZ and P. GABRIEL, Covering spaces in representation theory (Invent. Math., Vol. 65, 1982, pp. 331-378). Zbl0482.16026MR84i:16030
  16. [16] YU A. DROZD, Tame and wild matrix problems, (Lecture Notes in Math. Vol. 832, 1980, pp. 242-258). Zbl0457.16018MR83b:16024
  17. [17] D. HAPPEL, I. REITEN and S. O. SMALØ, Tilting in abelian categories and quasitilted algebras (Memoirs Amer. Math. Soc., Vol. 575, 1996). Zbl0849.16011
  18. [18] D. HAPPEL and C. M. RINGEL, Tilted algebras (Trans. Amer. Math. Soc., Vol. 274, 1982, pp. 299-343). Zbl0503.16024MR84d:16027
  19. [19] O. KERNER, Tilting wild algebras, (J. London Math. Soc., Vol. 39, 1989, pp. 29-47). Zbl0675.16013MR90d:16025
  20. [20] H. LENZING and H. MELZER, Tilting sheaves and concealed-canonical algebras (CMS Conf. Proc., Vol. 18, 1996, pp. 455-473). Zbl0863.16013MR97f:16026
  21. [21] H. LENZING and J. A. DE LA PEÑ;A, Concealed-canonical algebras and separating tubular families (Proc. London Math. Soc., in press). Zbl1035.16009
  22. [22] H. LENZING and A. SKOWROŃSKI, Quasi-tilted algebras of canonical type (Colloq. Math., Vol. 71(2), 1996, pp. 161-181). Zbl0870.16007MR97j:16019
  23. [23] S. LIU, Semi-stable components of an Auslander-Reiten quiver (J. London Math. Soc., Vol. 47, 1993 ; pp. 405-416). Zbl0818.16015MR94a:16024
  24. [24] S. LIU, Infinite radicals in standard Auslander-Reiten components, (J. Algebra, Vol. 166, 1994, pp. 245-254). Zbl0809.16016MR95g:16014
  25. [25] R. NÖRENBERG and A. SKOWROŃSKI, Tame minimal non-polynomial growth simply connected algebras (Coll. Math., Vol. 73(2), 1997, pp. 301-330). Zbl0889.16005MR98f:16012
  26. [26] C. RIEDTMANN, Degenerations for representations of quivers with relations (Ann. Sci. Ecole Norm. Sup., Vol. 4, 1986, pp. 275-301). Zbl0603.16025MR88b:16051
  27. [27] C. M. RINGEL, Tame algebras and integral quadratic forms (Lecture Notes in Math., Vol. 1099, 1984). Zbl0546.16013MR87f:16027
  28. [28] A. SKOWROŃSKI, Algebras of polynomial growth (Topics in Algebra, Banach Center Publ., Vol. 26, Part 1 (Warszawa 1990), pp. 535-568). Zbl0729.16005MR93k:16026
  29. [29] A. SKOWROŃSKI, Simply connected algebras and Hochschild cohomologies (CMS Conf. Proc., Vol. 14, 1993, pp. 431-447). Zbl0806.16012
  30. [30] A. SKOWROŃSKI, Cycles in module categories (NATO ASI Series, Series C, Vol. 424, 1994, pp. 309-345). Zbl0819.16013MR96a:16010
  31. [31] A. SKOWROŃSKI, Generalized standard Auslander-Reiten components (J. Math. Soc. Japan, Vol. 46, 1994, pp. 517-543). Zbl0828.16011MR95d:16022
  32. [32] A. SKOWROŃSKI, On semiregular Auslander-Reiten components (Bull. Polish Acad. Sci., Mathematics, Vol. 42, 1994, pp. 157-163). Zbl0828.16016
  33. [33] A. SKOWROŃSKI, On omnipresent tubular families of modules (CMS Conf. Proc., Vol. 18, 1996, pp. 641-657). Zbl0865.16013MR97f:16032
  34. [34] A. SKOWROŃSKI, Simply connected algebras of polynomial growth (Compositio Math., Vol. 109, 1997, pp. 99-133). Zbl0889.16004MR98k:16019
  35. [35] A. SKOWROŃSKI, Tame quasi-tilted algebras (J. Algebra, in press). Zbl0908.16013
  36. [36] A. SKOWROŃSKI and M. WENDERLICH, Artin algebras with directing indecomposable projective modules (J. Algebra, Vol. 165, 1994, pp. 507-530). Zbl0841.16014MR95e:16010
  37. [37] A. SKOWROŃSKI and G. ZWARA, On degenerations of modules with nondirecting indecomposable summands (Canad. J. Math., Vol. 48(5), 1996, pp. 1091-1120). Zbl0867.16006MR98a:16021
  38. [38] L. UNGER, The concealed algebras of the minimal wild, hereditary algebras (Bayreuther Math. Schriften, Vol. 31, 1990, pp. 145-154). Zbl0739.16012MR91i:16033
  39. [39] G. ZWARA, Degenerations in the module varietes of generalized standard Auslander-Reiten components (Colloq. Math., Vol. 72(2), 1997, pp. 281-303). Zbl0890.16006MR98a:16022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.