Displaying similar documents to “Ergodic decomposition of quasi-invariant probability measures”

A converse of the Arsenin–Kunugui theorem on Borel sets with σ-compact sections

P. Holický, Miroslav Zelený (2000)

Fundamenta Mathematicae

Similarity:

Let f be a Borel measurable mapping of a Luzin (i.e. absolute Borel metric) space L onto a metric space M such that f(F) is a Borel subset of M if F is closed in L. We show that then f - 1 ( y ) is a K σ set for all except countably many y ∈ M, that M is also Luzin, and that the Borel classes of the sets f(F), F closed in L, are bounded by a fixed countable ordinal. This gives a converse of the classical theorem of Arsenin and Kunugui. As a particular case we get Taĭmanov’s theorem saying that the...

Analytic nonregular cocycles over irrational rotations

Mariusz Lemańczyk (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Analytic cocycles of type I I I 0 over an irrational rotation are constructed and an example of that type is given, where all corresponding special flows are weakly mixing.

Very small sets

Haim Judah, Amiran Lior, Ireneusz Recław (1997)

Colloquium Mathematicae

Similarity:

On a one-dimensional analogue of the Smale horseshoe

Ryszard Rudnicki (1991)

Annales Polonici Mathematici

Similarity:

We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have φ ( T n x ) f ( x ) d x φ d μ , where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then n - 1 i = 0 n - 1 φ ( T i x ) φ d μ for Lebesgue-a.e. x.

Vitali sets and Hamel bases that are Marczewski measurable

Arnold Miller, Strashimir Popvassilev (2000)

Fundamenta Mathematicae

Similarity:

We give examples of a Vitali set and a Hamel basis which are Marczewski measurable and perfectly dense. The Vitali set example answers a question posed by Jack Brown. We also show there is a Marczewski null Hamel basis for the reals, although a Vitali set cannot be Marczewski null. The proof of the existence of a Marczewski null Hamel basis for the plane is easier than for the reals and we give it first. We show that there is no easy way to get a Marczewski null Hamel basis for the reals...

Decomposition of Banach Space into a Direct Sum of Separable and Reflexive Subspaces and Borel Maps

Plichko, Anatolij (1997)

Serdica Mathematical Journal

Similarity:

* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95. The main results of the paper are: Theorem 1. Let a Banach space E be decomposed into a direct sum of separable and reflexive subspaces. Then for every Hausdorff locally convex topological vector space Z and for every linear continuous bijective operator T : E → Z, the inverse T^(−1) is a Borel map. Theorem 2. Let us assume the continuum hypothesis....