Algebras of Borel measurable functions

Michał Morayne

Fundamenta Mathematicae (1992)

  • Volume: 141, Issue: 3, page 229-242
  • ISSN: 0016-2736

Abstract

top
We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.

How to cite

top

Morayne, Michał. "Algebras of Borel measurable functions." Fundamenta Mathematicae 141.3 (1992): 229-242. <http://eudml.org/doc/211962>.

@article{Morayne1992,
abstract = {We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.},
author = {Morayne, Michał},
journal = {Fundamenta Mathematicae},
keywords = {Baire classes; Borel measurable real functions; Polish space; Sierpiński classes},
language = {eng},
number = {3},
pages = {229-242},
title = {Algebras of Borel measurable functions},
url = {http://eudml.org/doc/211962},
volume = {141},
year = {1992},
}

TY - JOUR
AU - Morayne, Michał
TI - Algebras of Borel measurable functions
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 3
SP - 229
EP - 242
AB - We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.
LA - eng
KW - Baire classes; Borel measurable real functions; Polish space; Sierpiński classes
UR - http://eudml.org/doc/211962
ER -

References

top
  1. [CM] J. Cichoń and M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), 83-89. Zbl0646.26009
  2. [CMPS] J. Cichoń, M. Morayne, J. Pawlikowski and S. Solecki, Decomposing Baire functions, J. Symbolic Logic 56 (1991), 1273-1283. Zbl0742.04003
  3. [H] F. Hausdorff, Set Theory, Chelsea, New York 1962. 
  4. [Ke] S. Kempisty, Sur les séries itérées des fonctions continues, Fund. Math. 2 (1921), 64-73. Zbl48.0276.04
  5. [Ku] K. Kuratowski, Topology I, Academic Press, New York 1966. 
  6. [L] A. Lindenbaum, Sur les superpositions de fonctions represéntables analytiquement, Fund. Math. 23 (1934), 15-37; Corrections, ibid., 304. Zbl60.0195.02
  7. [Ma] R. D. Mauldin, On the Baire system generated by a linear lattice of functions, ibid. 68 (1970), 51-59. 
  8. [Mo] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam 1980. 
  9. [S1] W. Sierpiński, Sur les fonctions développables en séries absolument convergentes de fonctions continues, Fund. Math. 2 (1921), 15-27. Zbl48.0276.01
  10. [S2] W. Sierpiński, Démonstration d'un théorème sur les fonctions de première classe, ibid., 37-40. Zbl48.0276.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.