# The disjoint arcs property for homogeneous curves

Fundamenta Mathematicae (1995)

- Volume: 146, Issue: 2, page 159-169
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topKrupski, Paweł. "The disjoint arcs property for homogeneous curves." Fundamenta Mathematicae 146.2 (1995): 159-169. <http://eudml.org/doc/212059>.

@article{Krupski1995,

abstract = {The local structure of homogeneous continua (curves) is studied. Components of open subsets of each homogeneous curve which is not a solenoid have the disjoint arcs property. If the curve is aposyndetic, then the components are nonplanar. A new characterization of solenoids is formulated: a continuum is a solenoid if and only if it is homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not ∞-ods.},

author = {Krupski, Paweł},

journal = {Fundamenta Mathematicae},

keywords = {homogeneous continuum; aposyndetic curve; solenoid; disjoint arcs property; Menger universal curve; aposyndetic continuum; DAP},

language = {eng},

number = {2},

pages = {159-169},

title = {The disjoint arcs property for homogeneous curves},

url = {http://eudml.org/doc/212059},

volume = {146},

year = {1995},

}

TY - JOUR

AU - Krupski, Paweł

TI - The disjoint arcs property for homogeneous curves

JO - Fundamenta Mathematicae

PY - 1995

VL - 146

IS - 2

SP - 159

EP - 169

AB - The local structure of homogeneous continua (curves) is studied. Components of open subsets of each homogeneous curve which is not a solenoid have the disjoint arcs property. If the curve is aposyndetic, then the components are nonplanar. A new characterization of solenoids is formulated: a continuum is a solenoid if and only if it is homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not ∞-ods.

LA - eng

KW - homogeneous continuum; aposyndetic curve; solenoid; disjoint arcs property; Menger universal curve; aposyndetic continuum; DAP

UR - http://eudml.org/doc/212059

ER -

## References

top- [1] R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, Ann. of Math. 68 (1958), 1-16. Zbl0083.17608
- [2] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988). Zbl0645.54029
- [3] J. H. Case, Another 1-dimensional homogeneous continuum which contains an arc, Pacific J. Math. 11 (1961), 455-469. Zbl0101.15404
- [4] E. Duda, P. Krupski and J. T. Rogers, On locally chainable homogeneous continua, Topology Appl. 42 (1991), 95-99. Zbl0764.54023
- [5] E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55. Zbl0152.33203
- [6] F. B. Jones, The aposyndetic decomposition of homogeneous continua, Topology Proc. 8 (1983), 51-54. Zbl0537.54022
- [7] J. Krasinkiewicz, On homeomorphisms of the Sierpiński curve, Comment. Math. Prace Mat. 12 (1969), 255-257. Zbl0235.54039
- [8] P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109-118. Zbl0801.54015
- [9] P. Krupski and J. R. Prajs, Outlet points and homogeneous continua, Trans. Amer. Math. Soc. 318 (1990), 123-141. Zbl0705.54026
- [10] T. Maćkowiak, Terminal continua and the homogeneity, Fund. Math. 127 (1987), 177-186. Zbl0639.54027
- [11] T. Maćkowiak and E. D. Tymchatyn, Continuous mappings on continua II, Dissertationes Math. (Rozprawy Mat.) 225 (1984). Zbl0584.54029
- [12] J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets, ibid. 252 (1986). Zbl0649.54020
- [13] P. Minc and J. T. Rogers, Jr., Some new examples of homogeneous curves, Topology Proc. 10 (1985), 347-356. Zbl0609.54027
- [14] R. L. Moore, Triodic continua in the plane, Fund. Math. 13 (1929), 261-263. Zbl55.0978.03
- [15] J. R. Prajs, Openly homogeneous continua having only arcs for proper subcontinua, Topology Appl. 31 (1989), 133-147. Zbl0668.54021
- [16] J. T. Rogers, Jr., Decompositions of homogeneous continua, Pacific J. Math. 99 (1982), 137-144. Zbl0485.54028
- [17] J. T. Rogers, An aposyndetic homogeneous curve that is not locally connected, Houston J. Math. 9 (1983), 433-440. Zbl0526.54019
- [18] J. T. Rogers, Aposyndetic continua as bundle spaces, Trans. Amer. Math. Soc. 283 (1984), 49-55. Zbl0541.54040
- [19] J. T. Rogers, Homogeneous curves that contain arcs, Topology Appl. 21 (1985), 95-101. Zbl0575.54031
- [20] J. T. Rogers, Decompositions of continua over the hyperbolic plane, Trans. Amer. Math. Soc. 310 (1988), 277-291. Zbl0704.54020
- [21] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, R.I., 1942.
- [22] G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324. Zbl0081.16904

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.