The disjoint arcs property for homogeneous curves

Paweł Krupski

Fundamenta Mathematicae (1995)

  • Volume: 146, Issue: 2, page 159-169
  • ISSN: 0016-2736

Abstract

top
The local structure of homogeneous continua (curves) is studied. Components of open subsets of each homogeneous curve which is not a solenoid have the disjoint arcs property. If the curve is aposyndetic, then the components are nonplanar. A new characterization of solenoids is formulated: a continuum is a solenoid if and only if it is homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not ∞-ods.

How to cite

top

Krupski, Paweł. "The disjoint arcs property for homogeneous curves." Fundamenta Mathematicae 146.2 (1995): 159-169. <http://eudml.org/doc/212059>.

@article{Krupski1995,
abstract = {The local structure of homogeneous continua (curves) is studied. Components of open subsets of each homogeneous curve which is not a solenoid have the disjoint arcs property. If the curve is aposyndetic, then the components are nonplanar. A new characterization of solenoids is formulated: a continuum is a solenoid if and only if it is homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not ∞-ods.},
author = {Krupski, Paweł},
journal = {Fundamenta Mathematicae},
keywords = {homogeneous continuum; aposyndetic curve; solenoid; disjoint arcs property; Menger universal curve; aposyndetic continuum; DAP},
language = {eng},
number = {2},
pages = {159-169},
title = {The disjoint arcs property for homogeneous curves},
url = {http://eudml.org/doc/212059},
volume = {146},
year = {1995},
}

TY - JOUR
AU - Krupski, Paweł
TI - The disjoint arcs property for homogeneous curves
JO - Fundamenta Mathematicae
PY - 1995
VL - 146
IS - 2
SP - 159
EP - 169
AB - The local structure of homogeneous continua (curves) is studied. Components of open subsets of each homogeneous curve which is not a solenoid have the disjoint arcs property. If the curve is aposyndetic, then the components are nonplanar. A new characterization of solenoids is formulated: a continuum is a solenoid if and only if it is homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not ∞-ods.
LA - eng
KW - homogeneous continuum; aposyndetic curve; solenoid; disjoint arcs property; Menger universal curve; aposyndetic continuum; DAP
UR - http://eudml.org/doc/212059
ER -

References

top
  1. [1] R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, Ann. of Math. 68 (1958), 1-16. Zbl0083.17608
  2. [2] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988). Zbl0645.54029
  3. [3] J. H. Case, Another 1-dimensional homogeneous continuum which contains an arc, Pacific J. Math. 11 (1961), 455-469. Zbl0101.15404
  4. [4] E. Duda, P. Krupski and J. T. Rogers, On locally chainable homogeneous continua, Topology Appl. 42 (1991), 95-99. Zbl0764.54023
  5. [5] E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55. Zbl0152.33203
  6. [6] F. B. Jones, The aposyndetic decomposition of homogeneous continua, Topology Proc. 8 (1983), 51-54. Zbl0537.54022
  7. [7] J. Krasinkiewicz, On homeomorphisms of the Sierpiński curve, Comment. Math. Prace Mat. 12 (1969), 255-257. Zbl0235.54039
  8. [8] P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109-118. Zbl0801.54015
  9. [9] P. Krupski and J. R. Prajs, Outlet points and homogeneous continua, Trans. Amer. Math. Soc. 318 (1990), 123-141. Zbl0705.54026
  10. [10] T. Maćkowiak, Terminal continua and the homogeneity, Fund. Math. 127 (1987), 177-186. Zbl0639.54027
  11. [11] T. Maćkowiak and E. D. Tymchatyn, Continuous mappings on continua II, Dissertationes Math. (Rozprawy Mat.) 225 (1984). Zbl0584.54029
  12. [12] J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets, ibid. 252 (1986). Zbl0649.54020
  13. [13] P. Minc and J. T. Rogers, Jr., Some new examples of homogeneous curves, Topology Proc. 10 (1985), 347-356. Zbl0609.54027
  14. [14] R. L. Moore, Triodic continua in the plane, Fund. Math. 13 (1929), 261-263. Zbl55.0978.03
  15. [15] J. R. Prajs, Openly homogeneous continua having only arcs for proper subcontinua, Topology Appl. 31 (1989), 133-147. Zbl0668.54021
  16. [16] J. T. Rogers, Jr., Decompositions of homogeneous continua, Pacific J. Math. 99 (1982), 137-144. Zbl0485.54028
  17. [17] J. T. Rogers, An aposyndetic homogeneous curve that is not locally connected, Houston J. Math. 9 (1983), 433-440. Zbl0526.54019
  18. [18] J. T. Rogers, Aposyndetic continua as bundle spaces, Trans. Amer. Math. Soc. 283 (1984), 49-55. Zbl0541.54040
  19. [19] J. T. Rogers, Homogeneous curves that contain arcs, Topology Appl. 21 (1985), 95-101. Zbl0575.54031
  20. [20] J. T. Rogers, Decompositions of continua over the hyperbolic plane, Trans. Amer. Math. Soc. 310 (1988), 277-291. Zbl0704.54020
  21. [21] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, R.I., 1942. 
  22. [22] G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324. Zbl0081.16904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.