Menger curves in Peano continua
Colloquium Mathematicae (1996)
- Volume: 70, Issue: 1, page 79-86
- ISSN: 0010-1354
Access Full Article
topHow to cite
topKrupski, P., and Patkowska, H.. "Menger curves in Peano continua." Colloquium Mathematicae 70.1 (1996): 79-86. <http://eudml.org/doc/210398>.
@article{Krupski1996,
author = {Krupski, P., Patkowska, H.},
journal = {Colloquium Mathematicae},
keywords = {disjoint arcs property; Menger universal curve; Peano continuum; homogeneous continuum},
language = {eng},
number = {1},
pages = {79-86},
title = {Menger curves in Peano continua},
url = {http://eudml.org/doc/210398},
volume = {70},
year = {1996},
}
TY - JOUR
AU - Krupski, P.
AU - Patkowska, H.
TI - Menger curves in Peano continua
JO - Colloquium Mathematicae
PY - 1996
VL - 70
IS - 1
SP - 79
EP - 86
LA - eng
KW - disjoint arcs property; Menger universal curve; Peano continuum; homogeneous continuum
UR - http://eudml.org/doc/210398
ER -
References
top- [1] R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. 67 (1958), 33-324. Zbl0083.17607
- [2] R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, ibid. 68 (1958), 1-16. Zbl0083.17608
- [3] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988). Zbl0645.54029
- [4] A. Chigogidze, K. Kawamura and E. D. Tymchatyn, Menger manifolds, in: Continua with the Houston Problem Book, H. Cook, W. T. Ingram, K. T. Kuperberg, A. Lelek and P. Minc (eds.), Marcel Dekker, 1995, 37-88. Zbl0871.57019
- [5] P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109-118. Zbl0801.54015
- [6] P. Krupski, The disjoint arcs property for homogeneous curves, Fund. Math. 146 (1995), 159-169. Zbl0831.54031
- [7] K. Kuratowski, Topology II, Academic Press, New York, and PWN-Polish Sci. Publ., Warszawa, 1968.
- [8] J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets, Dissertationes Math. (Rozprawy Mat.) 252 (1986). Zbl0649.54020
- [9] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, R.I., 1942.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.