Menger curves in Peano continua

P. Krupski; H. Patkowska

Colloquium Mathematicae (1996)

  • Volume: 70, Issue: 1, page 79-86
  • ISSN: 0010-1354

How to cite

top

Krupski, P., and Patkowska, H.. "Menger curves in Peano continua." Colloquium Mathematicae 70.1 (1996): 79-86. <http://eudml.org/doc/210398>.

@article{Krupski1996,
author = {Krupski, P., Patkowska, H.},
journal = {Colloquium Mathematicae},
keywords = {disjoint arcs property; Menger universal curve; Peano continuum; homogeneous continuum},
language = {eng},
number = {1},
pages = {79-86},
title = {Menger curves in Peano continua},
url = {http://eudml.org/doc/210398},
volume = {70},
year = {1996},
}

TY - JOUR
AU - Krupski, P.
AU - Patkowska, H.
TI - Menger curves in Peano continua
JO - Colloquium Mathematicae
PY - 1996
VL - 70
IS - 1
SP - 79
EP - 86
LA - eng
KW - disjoint arcs property; Menger universal curve; Peano continuum; homogeneous continuum
UR - http://eudml.org/doc/210398
ER -

References

top
  1. [1] R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. 67 (1958), 33-324. Zbl0083.17607
  2. [2] R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, ibid. 68 (1958), 1-16. Zbl0083.17608
  3. [3] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988). Zbl0645.54029
  4. [4] A. Chigogidze, K. Kawamura and E. D. Tymchatyn, Menger manifolds, in: Continua with the Houston Problem Book, H. Cook, W. T. Ingram, K. T. Kuperberg, A. Lelek and P. Minc (eds.), Marcel Dekker, 1995, 37-88. Zbl0871.57019
  5. [5] P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109-118. Zbl0801.54015
  6. [6] P. Krupski, The disjoint arcs property for homogeneous curves, Fund. Math. 146 (1995), 159-169. Zbl0831.54031
  7. [7] K. Kuratowski, Topology II, Academic Press, New York, and PWN-Polish Sci. Publ., Warszawa, 1968. 
  8. [8] J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets, Dissertationes Math. (Rozprawy Mat.) 252 (1986). Zbl0649.54020
  9. [9] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, R.I., 1942. 

NotesEmbed ?

top

You must be logged in to post comments.