On composants of solenoids
Fundamenta Mathematicae (1995)
- Volume: 147, Issue: 2, page 181-188
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. M. Aarts, The structure of orbits in dynamical systems, Fund. Math. 129 (1988), 39-58. Zbl0664.54026
- [2] J. M. Aarts and R. J. Fokkink, The classification of solenoids, Proc. Amer. Math. Soc. 111 (1991), 1161-1163. Zbl0768.54026
- [3] R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math. 12 (1960), 209-230. Zbl0091.36204
- [4] C. Bandt, Composants of the horseshoe, Fund. Math. 144 (1994), 231-241. Zbl0818.54028
- [5] D. van Dantzig, Ueber topologisch homogene Kontinua, ibid. 15 (1930), 102-125.
- [6] R. J. Fokkink, The structure of trajectories, PhD thesis, Delft, 1991. Zbl0768.54028
- [7] R. J. Fokkink, There exist uncountably many orbits in flows, Fund. Math. 136 (1990), 147-156. Zbl0737.54021
- [8] A. van Heemert, Topologische Gruppen und unzerlegbare Kontinua, Compositio Math. 5 (1938), 319-326.
- [9] M. C. McCord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965), 197-209. Zbl0136.43603