Topological invariance of the Collet–Eckmann property for S-unimodal maps

Tomasz Nowicki; Feliks Przytycki

Fundamenta Mathematicae (1998)

  • Volume: 155, Issue: 1, page 33-43
  • ISSN: 0016-2736

Abstract

top
We prove that if f, g are smooth unimodal maps of the interval with negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is Collet-Eckmann, then so is g.

How to cite

top

Nowicki, Tomasz, and Przytycki, Feliks. "Topological invariance of the Collet–Eckmann property for S-unimodal maps." Fundamenta Mathematicae 155.1 (1998): 33-43. <http://eudml.org/doc/212241>.

@article{Nowicki1998,
abstract = {We prove that if f, g are smooth unimodal maps of the interval with negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is Collet-Eckmann, then so is g.},
author = {Nowicki, Tomasz, Przytycki, Feliks},
journal = {Fundamenta Mathematicae},
keywords = {-unimodal maps; absolutely continuous invariant measure; Collet-Eckmann condition; topological invariants; topological conjugacy; holomorphic dynamics},
language = {eng},
number = {1},
pages = {33-43},
title = {Topological invariance of the Collet–Eckmann property for S-unimodal maps},
url = {http://eudml.org/doc/212241},
volume = {155},
year = {1998},
}

TY - JOUR
AU - Nowicki, Tomasz
AU - Przytycki, Feliks
TI - Topological invariance of the Collet–Eckmann property for S-unimodal maps
JO - Fundamenta Mathematicae
PY - 1998
VL - 155
IS - 1
SP - 33
EP - 43
AB - We prove that if f, g are smooth unimodal maps of the interval with negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is Collet-Eckmann, then so is g.
LA - eng
KW - -unimodal maps; absolutely continuous invariant measure; Collet-Eckmann condition; topological invariants; topological conjugacy; holomorphic dynamics
UR - http://eudml.org/doc/212241
ER -

References

top
  1. [B1] H. Bruin, Invariant measures of interval maps, PhD thesis, Tech. Univ. Delft, 1994. 
  2. [B2] H. Bruin, Topological conditions for the existence of invariant measures for unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), 433-452. 
  3. [CE] P. Collet and J.-P. Eckmann, Positive Lyapunov exponents and absolute continuity for maps of the interval, ibid. 3 (1983), 13-46. Zbl0532.28014
  4. [CJY] L. Carleson, P. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. 25 (1994), 1-30. 
  5. [DPU] M. Denker, F. Przytycki and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255-266. Zbl0852.46024
  6. [GS] J. Graczyk and S. Smirnov, Collet, Eckmann, & Hölder, Invent. Math., to appear. 
  7. [JS] M. Jakobson and G. Świątek, Metric properties of non-renormalizable S-unimodal maps, II. Quasisymmetric conjugacy classes, Ergodic Theory Dynam. Systems 15 (1995), 871-938. Zbl0920.54037
  8. [M] R. Ma né, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-12. 
  9. [MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993. Zbl0791.58003
  10. [NP] T. Nowicki and F. Przytycki, The conjugacy of Collet-Eckmann's map of the interval with the tent map is Hölder continuous, Ergodic Theory Dynam. Systems 9 (1989), 379-388. Zbl0664.58014
  11. [NS] T. Nowicki and D. Sands, Nonuniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math., to appear. Zbl0908.58016
  12. [P1] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps, conformal and invariant measures, Trans. Amer. Math. Soc., to appear. Zbl0892.58063
  13. [P2] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in: International Conference on Dynamical Systems, Montevideo 1995 - a Tribute to Ricardo Ma né (F. Ledrappier, J. Lewowicz and S. Newhouse, eds.), Pitman Res. Notes Math. Ser. 362, Longman, 1996, 167-181. 
  14. [P3] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), 309-317. Zbl0787.58037
  15. [P4] F. Przytycki, Hölder implies CE, Astérisque, volume dedicated to A. Douady on his 60th birthday, to appear. 
  16. [PR1] F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math., to appear. Zbl0908.58054
  17. [PR2] F. Przytycki and S. Rohde, Rigidity of holomorphic Collet-Eckmann repellers, preprint, May 1997. Zbl1034.37026
  18. [S] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal case, Ph.D. thesis, St. John's College, Cambridge, 1995. 
  19. [SN] D. Sands and T. Nowicki, Quasisymmetric conjugacies of Collet-Eckmann maps, Ergodic Theory Dynam. Systems, to appear. 

NotesEmbed ?

top

You must be logged in to post comments.