Continuous decompositions of Peano plane continua into pseudo-arcs

Janusz Prajs

Fundamenta Mathematicae (1998)

  • Volume: 158, Issue: 1, page 23-40
  • ISSN: 0016-2736

Abstract

top
Locally planar Peano continua admitting continuous decomposition into pseudo-arcs (into acyclic curves) are characterized as those with no local separating point. This extends the well-known result of Lewis and Walsh on a continuous decomposition of the plane into pseudo-arcs.

How to cite

top

Prajs, Janusz. "Continuous decompositions of Peano plane continua into pseudo-arcs." Fundamenta Mathematicae 158.1 (1998): 23-40. <http://eudml.org/doc/212300>.

@article{Prajs1998,
abstract = {Locally planar Peano continua admitting continuous decomposition into pseudo-arcs (into acyclic curves) are characterized as those with no local separating point. This extends the well-known result of Lewis and Walsh on a continuous decomposition of the plane into pseudo-arcs.},
author = {Prajs, Janusz},
journal = {Fundamenta Mathematicae},
keywords = {continuous decomposition; locally connected continuum; local separating point; open homogeneity; pseudo-arc; 2-manifold},
language = {eng},
number = {1},
pages = {23-40},
title = {Continuous decompositions of Peano plane continua into pseudo-arcs},
url = {http://eudml.org/doc/212300},
volume = {158},
year = {1998},
}

TY - JOUR
AU - Prajs, Janusz
TI - Continuous decompositions of Peano plane continua into pseudo-arcs
JO - Fundamenta Mathematicae
PY - 1998
VL - 158
IS - 1
SP - 23
EP - 40
AB - Locally planar Peano continua admitting continuous decomposition into pseudo-arcs (into acyclic curves) are characterized as those with no local separating point. This extends the well-known result of Lewis and Walsh on a continuous decomposition of the plane into pseudo-arcs.
LA - eng
KW - continuous decomposition; locally connected continuum; local separating point; open homogeneity; pseudo-arc; 2-manifold
UR - http://eudml.org/doc/212300
ER -

References

top
  1. [1] A R. D. Anderson, On collections of pseudo-arcs, Abstract 337t, Bull. Amer. Math. Soc. 56 (1950), 350. 
  2. [2] W. Bajguz, Remark on embedding curves in surfaces, preprint. 
  3. [3] R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43-51. Zbl0043.16803
  4. [4] K. Borsuk, On embedding curves into surfaces, Fund. Math. 59 (1966), 73-89. 
  5. [5] M. Brown, Continuous collections of higher dimensional continua, Ph.D. thesis, University of Wisconsin, 1958. 
  6. [6] C J. J. Charatonik, Mappings of the Sierpiński curve onto itself, Proc. Amer. Math. Soc. 92 (1984), 125-132. Zbl0524.54010
  7. [7] C J. J. Charatonik, Generalized homogeneity of the Sierpiński universal plane curve, in: Topology. Theory and Applications (Eger, 1983), Colloq. Math. Soc. János Bolyai 41, North-Holland, 1985, 153-158. 
  8. [8] B. Knaster, Un continu dont tout sous-continu est indécomposable, Fund. Math. 3 (1922), 247-286. Zbl48.0212.01
  9. [9] J. Krasinkiewicz, On mappings with hereditarily indecomposable fibers, Bull. Polish Acad. Sci. Math. 44 (1996), 147-156. Zbl0867.54020
  10. [10] M. Levin, Bing maps and finite-dimensional maps, Fund. Math. 151 (1996), 47-52. Zbl0860.54028
  11. [11] W. Lewis, Pseudo-arc of pseudo-arcs is unique, Houston J. Math. 10 (1984), 227-234. Zbl0543.54029
  12. [12] W. Lewis, Continuous curves of pseudo-arcs, ibid. 11 (1985), 225-236. 
  13. [13] W. Lewis, Observations on the pseudo-arc, Topology Proc. 9 (1984), 329-337. Zbl0577.54038
  14. [14] W. Lewis, Continuous collections of hereditarily indecomposable continua, Topology Appl. 74 (1996), 169-176. Zbl0890.54009
  15. [15] W. Lewis, The pseudo-arc, in: Contemp. Math. 117, Amer. Math. Soc. 1991, 103-123. Zbl0736.54027
  16. [16] W. Lewis, Another characterization of the pseudo-arc, Bull. Polish Acad. Sci., to appear. Zbl0945.54028
  17. [17] W. Lewis and J. J. Walsh, A continuous decomposition of the plane into pseudo-arcs, Houston J. Math. 4 (1978), 209-222. Zbl0393.54007
  18. [18] M R. L. Moore, Concerning upper semicontinuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), 416-428. Zbl51.0464.03
  19. [19] S. Mazurkiewicz, Sur les continus homogènes, Fund. Math. 5 (1924), 137-146. 
  20. [20] J. R. Prajs, A continuous circle of pseudo-arcs filling up the annulus, Trans. Amer. Math. Soc., to appear. Zbl0936.54019
  21. [21] C. R. Seaquist, A continuous decomposition of the Sierpiński curve, in: Continua (Cincinnati, Ohio, 1994), Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker, 1995, 315-342. 
  22. [22] C. R. Seaquist, Monotone open homogeneity of the Sierpiński curve, Topology Appl., to appear. Zbl0923.54012
  23. [23] W G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324. Zbl0081.16904
  24. [24] Y G. S. Young, Characterization of 2-manifolds, Duke Math. J. 14 (1947), 979-990. Zbl0029.23204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.