Déformation J-équivalente de polynômes géometriquement finis

Peter Haïssinsky

Fundamenta Mathematicae (2000)

  • Volume: 163, Issue: 2, page 131-141
  • ISSN: 0016-2736

Abstract

top
Any geometrically finite polynomial f of degree d ≥ 2 with connected Julia set is accessible by structurally stable sub-hyperbolic polynomials of the same degree. Moreover, they are topologically conjugate to f on their Julia sets.

How to cite

top

Haïssinsky, Peter. "Déformation J-équivalente de polynômes géometriquement finis." Fundamenta Mathematicae 163.2 (2000): 131-141. <http://eudml.org/doc/212434>.

@article{Haïssinsky2000,
author = {Haïssinsky, Peter},
journal = {Fundamenta Mathematicae},
keywords = {Julia set; postcritical set; structurally stable polynomials; hyperbolic polynomial},
language = {fre},
number = {2},
pages = {131-141},
title = {Déformation J-équivalente de polynômes géometriquement finis},
url = {http://eudml.org/doc/212434},
volume = {163},
year = {2000},
}

TY - JOUR
AU - Haïssinsky, Peter
TI - Déformation J-équivalente de polynômes géometriquement finis
JO - Fundamenta Mathematicae
PY - 2000
VL - 163
IS - 2
SP - 131
EP - 141
LA - fre
KW - Julia set; postcritical set; structurally stable polynomials; hyperbolic polynomial
UR - http://eudml.org/doc/212434
ER -

References

top
  1. [1] L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, 1966. 
  2. [2] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. Zbl0127.03401
  3. [3] G. Cui, Geometrically finite rational maps with given combinatorics, preprint, 1997. 
  4. [4] G. David, Solutions de l’équation de Beltrami avec , Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), 25-70. Zbl0619.30024
  5. [5] A. Douady, Descriptions of compact sets in ℂ, in: Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 429-465. 
  6. [6] A. Douady et J. H. Hubbard, Étude dynamique des polynômes complexes I, II, Publ. Math. Orsay 84-02 et 85-05, 1984/85. Zbl0552.30018
  7. [7] A. Douady et J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. 18 (1985), 287-343. Zbl0587.30028
  8. [8] L. R. Goldberg and J. Milnor, Fixed points of polynomial maps. II. Fixed point portraits, ibid. 26 (1993), 51-98. Zbl0771.30028
  9. [9] P. Haïssinsky, Applications de la chirurgie holomorphe, notamment aux points paraboliques, thèse de l'Université de Paris-Sud, Orsay, 1998. 
  10. [10] P. Haïssinsky, Chirurgie parabolique, C. R. Acad. Sci. Paris 327 (1998), 195-198. 
  11. [11] R. Ma né, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. 16 (1983), 193-217. Zbl0524.58025
  12. [12] C. T. McMullen and D. P. Sullivan, Quasiconformal homeomorphisms and dynamics III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), 351-395. Zbl0926.30028
  13. [13] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Vieweg, Braunschweig, 1999. Zbl0946.30013
  14. [14] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. 20 (1987), 1-29. Zbl0621.58030

NotesEmbed ?

top

You must be logged in to post comments.