Fixed points of polynomial maps. Part II. Fixed point portraits

Lisa R. Goldberg; John Milnor

Annales scientifiques de l'École Normale Supérieure (1993)

  • Volume: 26, Issue: 1, page 51-98
  • ISSN: 0012-9593

How to cite

top

Goldberg, Lisa R., and Milnor, John. "Fixed points of polynomial maps. Part II. Fixed point portraits." Annales scientifiques de l'École Normale Supérieure 26.1 (1993): 51-98. <http://eudml.org/doc/82336>.

@article{Goldberg1993,
author = {Goldberg, Lisa R., Milnor, John},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {external rays; Julia st; fixed point},
language = {eng},
number = {1},
pages = {51-98},
publisher = {Elsevier},
title = {Fixed points of polynomial maps. Part II. Fixed point portraits},
url = {http://eudml.org/doc/82336},
volume = {26},
year = {1993},
}

TY - JOUR
AU - Goldberg, Lisa R.
AU - Milnor, John
TI - Fixed points of polynomial maps. Part II. Fixed point portraits
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1993
PB - Elsevier
VL - 26
IS - 1
SP - 51
EP - 98
LA - eng
KW - external rays; Julia st; fixed point
UR - http://eudml.org/doc/82336
ER -

References

top
  1. [At1] P. ATELA, The Mandelbrot Set and σ-Automorphisms of Quotients of the Shift, preprint PAM # 20, Applied Math, U. of Colorado. 
  2. [At2] P. ATELA, Bifurcation of Dynamical Rays in Complex Polynomials of Degree two, preprint PAM # 52, Applied Math, U. of Colorado. 
  3. [Bi] B. BIELEFELD, Conformal Dynamics Problem List, Stony Brook Institute for Mathematical Sciences Preprint, 1990/1991. 
  4. [B1] P. BLANCHARD, Complex Analytic Dynamics on the Riemann Sphere (Bull. Amer. Math. Soc., Vol. 11, 1984, pp. 84-141). Zbl0558.58017MR85h:58001
  5. [Br] B. BRANNER, The Mandelbrot Set, in Chaos and Fractals, DEVANEY and KEEN Eds. (A.M.S., Proc. Symp. Applied Math., Vol. 39, 1989). MR1010237
  6. [Brn] R. F. BROWN, The Lefschetz Fixed Point Theorem, Scott-Foresman 1971. Zbl0216.19601MR44 #1023
  7. [BD] B. BRANNER and A. DOUADY, Surgey on Complex Polynomials (to appear). 
  8. [BFH] B. BIELEFELD, Y. FISHER and J. H. HUBBARD, manuscript in preparation. 
  9. [BH] B. BRANNER and J. H. HUBBARD, The Iteration of Cubic Polynomials, Part I, Acta Math., 1989 ; Part II, to appear. 
  10. [D1] A. DOUADY, Systèmes dynamiques holomorphes (Séminaire Bourbaki, 35e année 1982/1983, No. 599). Zbl0532.30019
  11. [D2] A. DOUADY, Julia Sets and the Mandelbrot Set, pp. 161-173 of The Beauty of Fractals, PEITGEN and RICHTER Eds., Springer, 1986. 
  12. [De] R. DEVANEY, Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1985, 1989. Zbl0695.58002
  13. [DGr] J. DUGUNDJI and A. GRANAS, Fixed Point Theory, Polish Scientific Publishers, Warsaw, 1982. Zbl0483.47038MR83j:54038
  14. [DH1] A. DOUADY and J. H. HUBBARD, Itération des polynômes quadratiques complexes (C. R. Acad. Sci. Paris, T. 294, Séries I, 1982, pp. 123-126). Zbl0483.30014MR83m:58046
  15. [DH2] A. DOUADY and J. H. HUBBARD, Étude dynamique des polynômes complexes, Parts I, II, Publ. Math. Orsay, 1984-1985. Zbl0552.30018
  16. [DH3] A. DOUADY and J. H. HUBBARD, A proof of Thurston's Topological Characterization of Rational Functions, preprint, Mittag-Leffler 1984. 
  17. [DH4] A. DOUADY and J. H. HUBBARD, On the Dynamics of Polynomial-like Mappings (Ann. Sci. Ec. Norm. Sup., Vol. 18, 1985, pp. 287-343). Zbl0587.30028MR87f:58083
  18. [dM] W. DE MELO, Lectures on One-Dimensional Dynamics (17° Colóq. Brasil. Mat., I.M.P.A., 1989). 
  19. [Fi] Y. FISHER, Thesis, Cornell Univ. 1989. 
  20. [Gr] A. GRANAS, The Leray-Schauder Index and the Fixed Point Theory for arbitrary ANR's (Bull. Soc. Math. France, Vol. 100, 1972, pp. 209-228). Zbl0236.55004MR46 #8213
  21. [HJ] S. HU and Y. JIANG, Towards Topological Classification of Critically Finite Polynomials (in preparation). 
  22. [Ji] B. JIANG, Lectures on Nielsen Fixed Point Theory (Contemp. Math., Vol. 14, A.M.S., 1983). Zbl0512.55003MR84f:55002
  23. [Le] S. LEVY, Critically Finite Rational Maps (Thesis, Princeton University, 1985). 
  24. [Ly] M. LYUBICH, The Dynamics of Rational Transforms : The Topological Picture (Russ. Math. Surv., Vol. 41, 4, 1986, pp. 43-117). Zbl0619.30033
  25. [M1] J. MILNOR, Self-Similarity and Hairiness in the Mandelbrot set, pp. 211-257 of Computers in Geometry and Topology, TANGORA Ed., Lect. Notes Pure Appl. Math., Vol. 114, Dekker, 1989). Zbl0676.58036MR90c:58086
  26. [M2] J. MILNOR, Dynamics in one Complex Variable : Introductory Lectures, Stony Brook I.M.S. Preprint 1990/1995. 
  27. [Part I] L. R. GOLDBERG, Fixed Points of Polynomial Maps, Part I, Rotation subsets of the circle. Zbl0771.30027
  28. [Pe] C. PETERSEN, On the Pommerenke-Levin-Yoccoz inequality, preprint I.H.E.S., 1991. 
  29. [Po1] A. POIRIER, On the Realization of Fixed Point Portraits, Stony Brook I.M.S., Preprint, 1991/2000. 
  30. [Po2] A. POIRIER, On Postcritically Finite Polynomials (Thesis, Stony Brook, in preparation). 
  31. [Su] D. SULLIVAN, Conformal Dynamical Systems, pp. 725-752 of Geometric Dynamics, PALIS Ed., Lecture Notes Math., No. 1007, Springer, 1983). Zbl0524.58024MR85m:58112
  32. [Th1] W. THURSTON, On the Combinatorics of Iterated Rational Maps, preprint, Princeton University, circa, 1985. 
  33. [Th2] W. THURSTON, Three-dimensional Geometry and Topology (to appear). 
  34. [Ve] P. VEERMAN, Symbolic dynamics of order preserving orbits, Physica, Vol. 29D, 1987, pp. 191-201. Zbl0625.28012MR89h:58133

Citations in EuDML Documents

top
  1. Genadi Levin, Disconnected Julia set and rotation sets
  2. Pascale Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order
  3. Peter Haïssinsky, Déformation J-équivalente de polynômes géometriquement finis
  4. Adam Epstein, Michael Yampolsky, Geography of the cubic connectedness locus : intertwining surgery
  5. Feliks Przytycki, Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.