Chirurgie croisée

Peter Haïssinsky

Bulletin de la Société Mathématique de France (2000)

  • Volume: 128, Issue: 4, page 599-654
  • ISSN: 0037-9484

How to cite

top

Haïssinsky, Peter. "Chirurgie croisée." Bulletin de la Société Mathématique de France 128.4 (2000): 599-654. <http://eudml.org/doc/87842>.

@article{Haïssinsky2000,
author = {Haïssinsky, Peter},
journal = {Bulletin de la Société Mathématique de France},
keywords = {conformal dynamics; surgery; quasiconformal application; mu-conformal applications},
language = {fre},
number = {4},
pages = {599-654},
publisher = {Société mathématique de France},
title = {Chirurgie croisée},
url = {http://eudml.org/doc/87842},
volume = {128},
year = {2000},
}

TY - JOUR
AU - Haïssinsky, Peter
TI - Chirurgie croisée
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 4
SP - 599
EP - 654
LA - fre
KW - conformal dynamics; surgery; quasiconformal application; mu-conformal applications
UR - http://eudml.org/doc/87842
ER -

References

top
  1. [Ah] AHLFORS (L.). — Lectures on quasiconformal mappings. — Van Nostrand, 1966. Zbl0138.06002MR34 #336
  2. [Bi] BIELEFELD (B.), éd. — Conformal dynamics problem list. — Preprint IMS at Stony Brook, 1990. 
  3. [BD] BRANNER (B.), DOUADY (A.). — Surgery on complex polynomials. — Proc. Symp. of Dyn. Syst., Mexico (1986), Lecture Notes in Math. 1345, 1988, p. 11-72. Zbl0668.58026MR90e:58114
  4. [BF] BRANNER (B.), FAGELLA (N.). — Homeomorphisms between limbs of the Mandelbrot set, J. Geom. Anal., t. 9, 1999, p. 327-390. Zbl0961.37011MR2001j:37082
  5. [BH] BRANNER (B.), HUBBARD (J.H.). — The iteration of cubic polynomials II : Patterns and parapatterns, Acta Math., t. 169, 1992, p. 229-325. Zbl0812.30008MR94d:30044
  6. [Bu] BUFF (X.). — Points fixes de renormalisation. — Thèse de l'Université de Paris-Sud, Orsay, 1997. 
  7. [CG] CARLESON (L.), GAMELIN (T.W.). — Complex dynamics. — Springer-Verlag, 1993. Zbl0782.30022MR94h:30033
  8. [Da] DAVID (G.). — Solutions de l'équation de Beltrami avec ǁµǁ∞ = 1, Ann. Acad. Sci. Fenn. Ser. A I Math., t. 13, 1988, p. 25-70. Zbl0619.30024MR90d:30058
  9. [Do1] DOUADY (A.). — Systèmes dynamiques holomorphes, Sém. Bourbaki, vol. 1982/83, Astérisque 105-106, Soc. Math. France, Paris, 1983, p. 39-63. Zbl0532.30019
  10. [Do2] DOUADY (A.). — Descriptions of compact sets of ℂ, Topological methods in modern mathematics (Stony Brook 1991), 1993, p. 429-465. Zbl0801.58025MR94g:58185
  11. [DH1] DOUADY (A.), HUBBARD (J.H.). — Étude dynamique des polynômes complexes I & II. — Pub. math. d'Orsay 84-02 et 85-05, 1984/1985. Zbl0552.30018
  12. [DH2] DOUADY (A.), HUBBARD (J.H.). — On the dynamics of polynomial-like mappings, Ann. Sci. École normale sup., t. 18, 1985, p. 287-343. Zbl0587.30028MR87f:58083
  13. [EY] EPSTEIN (A.) & YAMPOLSKY (M.). — Geography of the cubic connected locus I : intertwining surgery, Ann. Sci. École normale sup., t. 32, 1999, p. 151-185. Zbl0959.37036MR2000i:37067
  14. [Fa] FAUGHT (D.). — Local connectivity in a family of cubic polynomials. — Ph.D. Thesis, Cornell, 1992. 
  15. [Ha1] HAÏSSINSKY (P.). — Applications de la chirurgie holomorphe, notamment aux points paraboliques. — Thèse de l'Université de Paris-Sud, Orsay, 1998. 
  16. [Ha2] HAÏSSINSKY (P.). — Chirurgie parabolique, C. R. Acad. Sci. Paris, t. 327, 1998, p. 195-198. Zbl0915.30024MR99i:58127
  17. [Ha3] HAÏSSINSKY (P.). — Déploiement J-équivalent de polynômes géométriquement finis, Fund. Math., t. 163, 2000, p. 131-141. Zbl0959.37037MR2001c:37044
  18. [Ha4] HAÏSSINSKY (P.). — Modulation dans l'ensemble de Mandelbrot, in The Mandelbrot set, theme and variations. — Tan Lei, éd., Lecture Note Series 274, Cambridge Univ. Press, 2000, p. 37-65. Zbl1062.37040MR2002c:37067
  19. [Hu] HUBBARD (J.H.). — Local connectivity of Julia sets and bifurcation loci : three theorems of J.-C. Yoccoz, Topological methods in modern mathematics (Stony Brook, 1991), 1993, p. 467-511. Zbl0797.58049MR94c:58172
  20. [Mc] MCMULLEN (C.T.). — Automorphisms of rational maps, Proc. MSRI Holomorphic functions and moduli I, Berkeley (1986), 1988, p. 31-60. Zbl0692.30035MR89m:58187
  21. [McS] MCMULLEN (C.T.), SULLIVAN (D.). — Quasiconformal homeomorphism & dynamics III : the Teichmüller space of a holomorphic dynamical system, Adv. Math., t. 135, 1998, p. 351-395. Zbl0926.30028MR99e:58145
  22. [MSS] MAÑÉ (R.), SAD (P.), SULLIVAN (D.). — On the dynamics of rational maps, Ann. Sci. École normale sup., 1983, p. 193-217. Zbl0524.58025MR85j:58089
  23. [Mi] MILNOR (J.). — Dynamics in one complex variable : Introductory lectures. — Friedr. Vieweg & Sohn, Braunschweig, 1999. Zbl0946.30013MR2002i:37057
  24. [Mo] MOORE (R.L.). — Concerning upper semi-continuous collections of compacta, Trans. Amer. Math. Soc., t. 27, 1925, p. 416-428. Zbl51.0464.03MR1501320JFM51.0464.03
  25. [Pe] PETERSEN (C.L.). — On the Pommerenke-Levin-Yoccoz inequality, Erg. Th. & Dyn. Sys., t. 13, 1993, p. 785-806. Zbl0802.30022MR94k:58122
  26. [Po] POMMERENKE (C.). — Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. Zbl0298.30014MR58 #22526
  27. [Ri] RICKMAN (S.). — Removability theorems for quasiconformal mappings, Ann. Acad. Fenn. Sc., t. 449, 1969. Zbl0189.09301MR40 #7443
  28. [Sh] SHISHIKURA (M.). — The parabolic bifurcation of rational maps, ou Bifurcation of parabolic fixed points, in The Mandelbrot set, theme and variations, Tan Lei, éd., Lecture Note Series 274, Cambridge University Press, 2000, p. 325-363. Zbl1062.37043MR2001k:37073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.