Parabolic orbifolds and the dimension of the maximal measure for rational maps.
Inventiones mathematicae (1990)
- Volume: 99, Issue: 3, page 627-650
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topZdunik, Anna. "Parabolic orbifolds and the dimension of the maximal measure for rational maps.." Inventiones mathematicae 99.3 (1990): 627-650. <http://eudml.org/doc/143773>.
@article{Zdunik1990,
author = {Zdunik, Anna},
journal = {Inventiones mathematicae},
keywords = {rational map; Riemann sphere; invariant measure; maximal entropy; Hausdorff dimension; Julia set},
number = {3},
pages = {627-650},
title = {Parabolic orbifolds and the dimension of the maximal measure for rational maps.},
url = {http://eudml.org/doc/143773},
volume = {99},
year = {1990},
}
TY - JOUR
AU - Zdunik, Anna
TI - Parabolic orbifolds and the dimension of the maximal measure for rational maps.
JO - Inventiones mathematicae
PY - 1990
VL - 99
IS - 3
SP - 627
EP - 650
KW - rational map; Riemann sphere; invariant measure; maximal entropy; Hausdorff dimension; Julia set
UR - http://eudml.org/doc/143773
ER -
Citations in EuDML Documents
top- François Berteloot, Jean-Jacques Loeb, Une caractérisation géométrique des exemples de Lattès de
- I. Popovici, Alexander Volberg, Rigidity of harmonic measure
- Alexander Volberg, An estimate from below for the Markov constant of a Cantor repeller
- Anna Zdunik, On biaccessible points in Julia sets of polynomials
- Feliks Przytycki, Juan Rivera-Letelier, Statistical properties of topological Collet–Eckmann maps
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.