Knots in S 2 x S 1 derived from Sym(2, ℝ)

Sang Lee; Yongdo Lim; Chan-Young Park

Fundamenta Mathematicae (2000)

  • Volume: 164, Issue: 3, page 241-252
  • ISSN: 0016-2736

Abstract

top
We realize closed geodesics on the real conformal compactification of the space V = Sym(2, ℝ) of all 2 × 2 real symmetric matrices as knots or 2-component links in S 2 × S 1 and show that these knots or links have certain types of symmetry of period 2.

How to cite

top

Lee, Sang, Lim, Yongdo, and Park, Chan-Young. "Knots in $S^2 x S^1$ derived from Sym(2, ℝ)." Fundamenta Mathematicae 164.3 (2000): 241-252. <http://eudml.org/doc/212455>.

@article{Lee2000,
abstract = {We realize closed geodesics on the real conformal compactification of the space V = Sym(2, ℝ) of all 2 × 2 real symmetric matrices as knots or 2-component links in $S^2 × S^1$ and show that these knots or links have certain types of symmetry of period 2.},
author = {Lee, Sang, Lim, Yongdo, Park, Chan-Young},
journal = {Fundamenta Mathematicae},
keywords = {geodesic; symmetric matrix; Shilov boundary; 2-periodic knot; geodesics},
language = {eng},
number = {3},
pages = {241-252},
title = {Knots in $S^2 x S^1$ derived from Sym(2, ℝ)},
url = {http://eudml.org/doc/212455},
volume = {164},
year = {2000},
}

TY - JOUR
AU - Lee, Sang
AU - Lim, Yongdo
AU - Park, Chan-Young
TI - Knots in $S^2 x S^1$ derived from Sym(2, ℝ)
JO - Fundamenta Mathematicae
PY - 2000
VL - 164
IS - 3
SP - 241
EP - 252
AB - We realize closed geodesics on the real conformal compactification of the space V = Sym(2, ℝ) of all 2 × 2 real symmetric matrices as knots or 2-component links in $S^2 × S^1$ and show that these knots or links have certain types of symmetry of period 2.
LA - eng
KW - geodesic; symmetric matrix; Shilov boundary; 2-periodic knot; geodesics
UR - http://eudml.org/doc/212455
ER -

References

top
  1. [1] W. Bertram, Un théorème de Liouville pour les algèbres de Jordan, Bull. Soc. Math. France 124 (1996), 299-327. 
  2. [2] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Univ. Press, Oxford, 1994. Zbl0841.43002
  3. [3] R. H. Fox, Knots and periodic transformations, in: Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Institute, 1961), Prentice-Hall, 1962, 177-182. 
  4. [4] K. W. Kwun, Piecewise linear involutions of S 1 × S 2 , Michigan Math. J. 16 (1969), 93-96. 
  5. [5] S. Y. Lee, Y. Lim and C.-Y. Park, Symmetric geodesics on conformal compactifications of Euclidean Jordan algebras, Bull. Austral. Math. Soc. 59 (1999), 187-201. Zbl0977.53038
  6. [6] B. Makarevich, Ideal points of semisimple Jordan algebras, Mat. Zametki 15 (1974), 295-305 (in Russian). 
  7. [7] J. W. Morgan and H. Bass, The Smith Conjecture, Academic Press, 1984. Zbl0599.57001
  8. [8] D. Rolfsen, Knots and Links, Publish or Perish, 1976. 
  9. [9] P. A. Smith, Transformations of finite period II, Ann. of Math. 40 (1939), 690-711. Zbl0021.43002
  10. [10] Y. Tao, On fixed point free involutions of S 1 × S 2 , Osaka Math. J. 14 (1962), 145-152. 
  11. [11] J. L. Tollefson, Involutions on S 1 × S 2 and other 3-manifolds Trans. Amer. Math. Soc. 183 (1973), 139-152. Zbl0276.57001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.