Knots in derived from Sym(2, ℝ)
Sang Lee; Yongdo Lim; Chan-Young Park
Fundamenta Mathematicae (2000)
- Volume: 164, Issue: 3, page 241-252
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topLee, Sang, Lim, Yongdo, and Park, Chan-Young. "Knots in $S^2 x S^1$ derived from Sym(2, ℝ)." Fundamenta Mathematicae 164.3 (2000): 241-252. <http://eudml.org/doc/212455>.
@article{Lee2000,
abstract = {We realize closed geodesics on the real conformal compactification of the space V = Sym(2, ℝ) of all 2 × 2 real symmetric matrices as knots or 2-component links in $S^2 × S^1$ and show that these knots or links have certain types of symmetry of period 2.},
author = {Lee, Sang, Lim, Yongdo, Park, Chan-Young},
journal = {Fundamenta Mathematicae},
keywords = {geodesic; symmetric matrix; Shilov boundary; 2-periodic knot; geodesics},
language = {eng},
number = {3},
pages = {241-252},
title = {Knots in $S^2 x S^1$ derived from Sym(2, ℝ)},
url = {http://eudml.org/doc/212455},
volume = {164},
year = {2000},
}
TY - JOUR
AU - Lee, Sang
AU - Lim, Yongdo
AU - Park, Chan-Young
TI - Knots in $S^2 x S^1$ derived from Sym(2, ℝ)
JO - Fundamenta Mathematicae
PY - 2000
VL - 164
IS - 3
SP - 241
EP - 252
AB - We realize closed geodesics on the real conformal compactification of the space V = Sym(2, ℝ) of all 2 × 2 real symmetric matrices as knots or 2-component links in $S^2 × S^1$ and show that these knots or links have certain types of symmetry of period 2.
LA - eng
KW - geodesic; symmetric matrix; Shilov boundary; 2-periodic knot; geodesics
UR - http://eudml.org/doc/212455
ER -
References
top- [1] W. Bertram, Un théorème de Liouville pour les algèbres de Jordan, Bull. Soc. Math. France 124 (1996), 299-327.
- [2] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Univ. Press, Oxford, 1994. Zbl0841.43002
- [3] R. H. Fox, Knots and periodic transformations, in: Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Institute, 1961), Prentice-Hall, 1962, 177-182.
- [4] K. W. Kwun, Piecewise linear involutions of , Michigan Math. J. 16 (1969), 93-96.
- [5] S. Y. Lee, Y. Lim and C.-Y. Park, Symmetric geodesics on conformal compactifications of Euclidean Jordan algebras, Bull. Austral. Math. Soc. 59 (1999), 187-201. Zbl0977.53038
- [6] B. Makarevich, Ideal points of semisimple Jordan algebras, Mat. Zametki 15 (1974), 295-305 (in Russian).
- [7] J. W. Morgan and H. Bass, The Smith Conjecture, Academic Press, 1984. Zbl0599.57001
- [8] D. Rolfsen, Knots and Links, Publish or Perish, 1976.
- [9] P. A. Smith, Transformations of finite period II, Ann. of Math. 40 (1939), 690-711. Zbl0021.43002
- [10] Y. Tao, On fixed point free involutions of , Osaka Math. J. 14 (1962), 145-152.
- [11] J. L. Tollefson, Involutions on and other 3-manifolds Trans. Amer. Math. Soc. 183 (1973), 139-152. Zbl0276.57001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.