Un théorème de Liouville pour les algèbres de Jordan

Wolfgang Bertram

Bulletin de la Société Mathématique de France (1996)

  • Volume: 124, Issue: 2, page 299-327
  • ISSN: 0037-9484

How to cite

top

Bertram, Wolfgang. "Un théorème de Liouville pour les algèbres de Jordan." Bulletin de la Société Mathématique de France 124.2 (1996): 299-327. <http://eudml.org/doc/87740>.

@article{Bertram1996,
author = {Bertram, Wolfgang},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Liouville theorem; conformal group; semi-simple Jordan algebras},
language = {fre},
number = {2},
pages = {299-327},
publisher = {Société mathématique de France},
title = {Un théorème de Liouville pour les algèbres de Jordan},
url = {http://eudml.org/doc/87740},
volume = {124},
year = {1996},
}

TY - JOUR
AU - Bertram, Wolfgang
TI - Un théorème de Liouville pour les algèbres de Jordan
JO - Bulletin de la Société Mathématique de France
PY - 1996
PB - Société mathématique de France
VL - 124
IS - 2
SP - 299
EP - 327
LA - fre
KW - Liouville theorem; conformal group; semi-simple Jordan algebras
UR - http://eudml.org/doc/87740
ER -

References

top
  1. [A74] ARNOLD (V.). — Équations Différentielles ordinaires. — Éditions MIR, Moscou, 1974. Zbl0296.34002MR50 #13678
  2. [Be94] BERTRAM (W.). — Dualité des espaces riemanniens symétriques et analyse harmonique, thèse, Université Paris 6, 1994. 
  3. [DNF79] DOUBROVINE (B.A.), NOVIKOV (S.P.) et FOMENKO (A.T.). — Géométrie contemporaine I. — Éditions MIR, 1979. 
  4. [FK94] FARAUT (J.) et KORANYI (A.). — Analysis on symmetric cones. — Oxford University Press, 1994. Zbl0841.43002MR98g:17031
  5. [Go87] GONCHAROV (A.B.). — Generalized conformal structures on manifolds, Selecta Math. Soviet. 6, 1987, p. 307-340. Zbl0632.53038MR89e:53050
  6. [Kan89] KANEYUKI (S.). — On the causal structures of the Shilov boundaries of symmetric bounded domains, dans Prospects in Complex Geometry. — Springer Lecture Note 1468, New York, 1989. Zbl0755.32030
  7. [Kay94] KAYOYA (J.-B.). — Analyse sur les algèbres de Jordan réelles simples, thèse, Université Paris 6, 1994. 
  8. [Ko72] KOBAYASHI (S.). — Transformation Groups in Differential Geometry. — Springer EMG 70, New York, 1972. Zbl0246.53031MR50 #8360
  9. [KS93] KOSTANT (B.) and SAHI (A.). — Jordan algebras and Capelli identities, Invent. Math., t. 112, 1993, p. 657-664. Zbl0999.17043MR94b:17054
  10. [L1850] LIOUVILLE (J.). — Théorème sur l'équation dx² + dy² + dz² = λ(dα² + dβ² + dϒ²), J. Math. Pures et Appl., t. 15, p. 103, 1850. 
  11. [Lo77] LOOS (O.). — Bounded symmetric domains and Jordan pairs, Lecture Notes, Univ. of California, Irvine, 1977. 
  12. [Ru92] RUBENTHALER (H.). — Algèbres de Lie et espaces préhomogènes. — Hermann, Paris, 1992. Zbl0840.17007
  13. [Sa80] SATAKE (I.). — Algebraic structures of symmetric domains. — Iwanami Shoten, Princeton, 1980. Zbl0483.32017MR82i:32003
  14. [Shi75] SHIMA (H.). — On locally homogeneous domains of completeley reductive linear Lie groups, Mathematische Annalen, t. 217, 1975, p. 93-95. Zbl0305.22009MR52 #818
  15. [St64] STERNBERG (S.). — Lectures on Differential Geometry. — Prentice-Hall, Englewood Cliffs, 1964. Zbl0129.13102MR33 #1797

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.