The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Oscillatory singular integrals on weighted Hardy spaces”

An oscillatory singular integral operator with polynomial phase

Josfina Alvarez, Jorge Hounie (1999)

Studia Mathematica

Similarity:

We prove the continuity of an oscillatory singular integral operator T with polynomial phase P(x,y) on an atomic space H P 1 related to the phase P. Moreover, we show that the cancellation condition to be imposed on T holds under more general conditions. To that purpose, we obtain a van der Corput type lemma with integrability at infinity.

Estimates for oscillatory singular integrals on Hardy spaces

Hussain Al-Qassem, Leslie Cheng, Yibiao Pan (2014)

Studia Mathematica

Similarity:

For any n ∈ ℕ, we obtain a bound for oscillatory singular integral operators with polynomial phases on the Hardy space H¹(ℝⁿ). Our estimate, expressed in terms of the coefficients of the phase polynomial, establishes the H¹ boundedness of such operators in all dimensions when the degree of the phase polynomial is greater than one. It also subsumes a uniform boundedness result of Hu and Pan (1992) for phase polynomials which do not contain any linear terms. Furthermore, the bound is shown...

L boundedness of a singular integral operator.

Dashan Fan, Yibiao Pan (1997)

Publicacions Matemàtiques

Similarity:

In this paper we study a singular integral operator T with rough kernel. This operator has singularity along sets of the form {x = Q(|y|)y'}, where Q(t) is a polynomial satisfying Q(0) = 0. We prove that T is a bounded operator in the space L2(Rn), n ≥ 2, and this bound is independent of the coefficients of Q(t). We also obtain certain Hardy type inequalities related to this operator.

L 2 and L p estimates for oscillatory integrals and their extended domains

Yibiao Pan, Gary Sampson, Paweł Szeptycki (1997)

Studia Mathematica

Similarity:

We prove the L p boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function | x | α | y | β . Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.