Integral formulae for special cases of Taylor's functional calculus
Studia Mathematica (1993)
- Volume: 105, Issue: 1, page 51-68
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. W. Albrecht, Matrix techniques in the study of complexes, Analysis Paper 79, Monash University, Clayton, Victoria, 1991.
- [2] R. Arens, Analytic-functional calculus in commutative topological algebras, Pacific J. Math. 11 (1961), 405-429. Zbl0109.34203
- [3] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Math. Appl. 9, Gordon and Breach, New York 1968. Zbl0189.44201
- [4] G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb. 78 (1969), 611-632 (in Russian).
- [5] J. Janas, On integral formulas and their applications in functional calculus, J. Math. Anal. Appl. 114 (1986), 328-339. Zbl0604.47009
- [6] S. Lang, Algebra, Addison-Wesley, 1965.
- [7] A. McIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting operators, Macquarie Math. Reports (1986), 86-0069.
- [8] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, New York 1986. Zbl0591.32002
- [9] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. Zbl0233.47024
- [10] J. L. Taylor, Analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. Zbl0233.47025
- [11] F. H. Vasilescu, A Martinelli type formula for the analytic functional calculus, Rev. Roumaine Math. Pures Appl. 23 (10) (1978), 1587-1605. Zbl0402.47011
- [12] V. S. Vladimirov, Methods of the Theory of Functions of Several Complex Variables, Nauka, Moscow 1964; English transl.: M.I.T. Press, Cambridge, Mass., 1966.