# Vasilescu-Martinelli formula for operators in Banach spaces

Studia Mathematica (1995)

- Volume: 113, Issue: 2, page 127-139
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topKordula, V., and Müller, V.. "Vasilescu-Martinelli formula for operators in Banach spaces." Studia Mathematica 113.2 (1995): 127-139. <http://eudml.org/doc/216165>.

@article{Kordula1995,

abstract = {We prove a formula for the Taylor functional calculus for functions analytic in a neighbourhood of the splitting spectrum of an n-tuple of commuting Banach space operators. This generalizes the formula of Vasilescu for Hilbert space operators and is closely related to a recent result of D. W. Albrecht.},

author = {Kordula, V., Müller, V.},

journal = {Studia Mathematica},

keywords = {functions analytic in a neighn a neighbourhood of the splitting spectrum; space operators; Taylor functional calculus; -tuple of commuting Banach space operators},

language = {eng},

number = {2},

pages = {127-139},

title = {Vasilescu-Martinelli formula for operators in Banach spaces},

url = {http://eudml.org/doc/216165},

volume = {113},

year = {1995},

}

TY - JOUR

AU - Kordula, V.

AU - Müller, V.

TI - Vasilescu-Martinelli formula for operators in Banach spaces

JO - Studia Mathematica

PY - 1995

VL - 113

IS - 2

SP - 127

EP - 139

AB - We prove a formula for the Taylor functional calculus for functions analytic in a neighbourhood of the splitting spectrum of an n-tuple of commuting Banach space operators. This generalizes the formula of Vasilescu for Hilbert space operators and is closely related to a recent result of D. W. Albrecht.

LA - eng

KW - functions analytic in a neighn a neighbourhood of the splitting spectrum; space operators; Taylor functional calculus; -tuple of commuting Banach space operators

UR - http://eudml.org/doc/216165

ER -

## References

top- [1] D. W. Albrecht, Integral formulae for special cases of Taylor's functional calculus, Studia Math. 105 (1993), 51-68. Zbl0810.47013
- [2] K. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, ibid. 107 (1993), 127-135. Zbl0812.47031
- [3] R. Levi, Notes on the Taylor joint spectrum of commuting operators, in: Spectral Theory, Banach Center Publ. 8, PWN-Polish Scientific Publishers, Warszawa, 1982, 321-332.
- [4] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. Zbl0233.47024
- [5] J. L. Taylor, Analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. Zbl0233.47025
- [6] F.-H. Vasilescu, A Martinelli type formula for the analytic functional calculus, Rev. Roumaine Math. Pures Appl. 23 (1978), 1587-1605. Zbl0402.47011
- [7] F.-H. Vasilescu, A multidimensional spectral theory in C*-algebras, in: Spectral Theory, Banach Center Publ. 8, PWN-Polish Scientific Publishers, Warszawa, 1982, 471-491.
- [8] F.-H. Vasilescu, Calcul Funcţional Analitic Multidimensional, Editura Academiei, Bucureşti, 1979.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.