The Słodkowski spectra and higher Shilov boundaries
Studia Mathematica (1993)
- Volume: 105, Issue: 1, page 69-75
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topMüller, Vladimír. "The Słodkowski spectra and higher Shilov boundaries." Studia Mathematica 105.1 (1993): 69-75. <http://eudml.org/doc/215984>.
@article{Müller1993,
abstract = {We investigate relations between the spectra defined by Słodkowski [14] and higher Shilov boundaries of the Taylor spectrum. The results generalize the well-known relation between the approximate point spectrum and the usual Shilov boundary.},
author = {Müller, Vladimír},
journal = {Studia Mathematica},
keywords = {higher Shilov boundaries of the Taylor spectrum; approximate point spectrum},
language = {eng},
number = {1},
pages = {69-75},
title = {The Słodkowski spectra and higher Shilov boundaries},
url = {http://eudml.org/doc/215984},
volume = {105},
year = {1993},
}
TY - JOUR
AU - Müller, Vladimír
TI - The Słodkowski spectra and higher Shilov boundaries
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 1
SP - 69
EP - 75
AB - We investigate relations between the spectra defined by Słodkowski [14] and higher Shilov boundaries of the Taylor spectrum. The results generalize the well-known relation between the approximate point spectrum and the usual Shilov boundary.
LA - eng
KW - higher Shilov boundaries of the Taylor spectrum; approximate point spectrum
UR - http://eudml.org/doc/215984
ER -
References
top- [1] E. Albrecht and F.-H. Vasilescu, Stability of the index of a semi-Fredholm complex of Banach spaces, J. Funct. Anal. 66 (1986), 141-172. Zbl0592.47008
- [2] R. Basener, A generalized Shilov boundary and analytic structure, Proc. Amer. Math. Soc. 47 (1975), 98-104. Zbl0296.46056
- [3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973. Zbl0271.46039
- [4] J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309-314. Zbl0375.47001
- [5] M. Chō and M. Takaguchi, Boundary of Taylor's joint spectrum for two commuting operators, Sci. Rep. Hirosaki Univ. 28 (1981), 1-4. Zbl0499.47001
- [6] G. Corach and F. D. Suárez, Generalized rational convexity in Banach algebras, Pacific J. Math. 140 (1989), 35-51. Zbl0705.46029
- [7] R. E. Curto, Connections between Harte and Taylor spectrum, Rev. Roumaine Math. Pures Appl. 31 (1986), 203-215. Zbl0609.47007
- [8] A. S. Faĭnshteĭn, Joint essential spectrum of a family of linear operators, Funct. Anal. Appl. 14 (1980), 152-153.
- [9] A. S. Faĭnshteĭn, Stability of Fredholm complexes of Banach spaces with respect to perturbations which are small in q-norms, Izv. Akad. Nauk Azerbaǐdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 1980 (1), 3-8 (in Russian).
- [10] K.-H. Förster and E.-O. Liebentrau, Semi-Fredholm operators and sequence conditions, Manuscripta Math. 44 (1983), 35-44. Zbl0519.47009
- [11] M. Putinar, Functional calculus and the Gelfand transformation, Studia Math. 84 (1984), 83-86. Zbl0498.47009
- [12] B. N. Sadovskiĭ, Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155. Zbl0243.47033
- [13] N. Sibony, Multidimensional analytic structure in the spectrum of a uniform algebra, in: Spaces of Analytic Functions, Kristiansand, Norway 1975, Lecture Notes in Math. 512, Springer, Berlin, 139-175.
- [14] Z. Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1977), 239-255. Zbl0369.47021
- [15] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, ibid. 50 (1974), 127-148. Zbl0306.47014
- [16] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. Zbl0233.47024
- [17] J. L. Taylor, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. Zbl0233.47025
- [18] T. Tonev, New relations between Sibony-Basener boundaries, in: Complex Analysis III, C. A. Berenstein (ed.), Lecture Notes in Math. 1277, Springer, Berlin 1987, 256-262. Zbl0628.46056
- [19] V. Wrobel, The boundary of Taylor's joint spectrum for two commuting Banach space operators, Studia Math. 84 (1986), 105-111. Zbl0619.47002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.