Continuous linear right inverses for convolution operators in spaces of real analytic functions
Studia Mathematica (1994)
- Volume: 110, Issue: 1, page 65-82
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topLangenbruch, Michael. "Continuous linear right inverses for convolution operators in spaces of real analytic functions." Studia Mathematica 110.1 (1994): 65-82. <http://eudml.org/doc/216099>.
@article{Langenbruch1994,
abstract = {We determine the convolution operators $T_μ := μ*$ on the real analytic functions in one variable which admit a continuous linear right inverse. The characterization is given by means of a slowly decreasing condition of Ehrenpreis type and a restriction of hyperbolic type on the location of zeros of the Fourier transform μ̂(z).},
author = {Langenbruch, Michael},
journal = {Studia Mathematica},
keywords = {convolution operators; right inverse; Fourier transform},
language = {eng},
number = {1},
pages = {65-82},
title = {Continuous linear right inverses for convolution operators in spaces of real analytic functions},
url = {http://eudml.org/doc/216099},
volume = {110},
year = {1994},
}
TY - JOUR
AU - Langenbruch, Michael
TI - Continuous linear right inverses for convolution operators in spaces of real analytic functions
JO - Studia Mathematica
PY - 1994
VL - 110
IS - 1
SP - 65
EP - 82
AB - We determine the convolution operators $T_μ := μ*$ on the real analytic functions in one variable which admit a continuous linear right inverse. The characterization is given by means of a slowly decreasing condition of Ehrenpreis type and a restriction of hyperbolic type on the location of zeros of the Fourier transform μ̂(z).
LA - eng
KW - convolution operators; right inverse; Fourier transform
UR - http://eudml.org/doc/216099
ER -
References
top- [1] C. A. Berenstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable, Adv. in Math. 33 (1979), 109-143. Zbl0432.30028
- [2] C. A. Berenstein and B. A. Taylor, Interpolation problems in with application to harmonic analysis, J. Analyse Math. 38 (1980), 188-254. Zbl0464.42003
- [3] R. Braun, R. Meise and D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions, Proc. London Math. Soc. 61 (1990), 344-370. Zbl0699.46021
- [4] L. Ehrenpreis, Solution of some problems of division. Part IV. Invertible and elliptic operators, Amer. J. Math. 82 (1960), 522-588. Zbl0098.08401
- [5] L. Ehrenpreis, Solution of some problems of division. Part V. Hyperbolic operators, ibid. 84 (1962), 324-348.
- [6] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Princeton Univ. Press, 1967. Zbl0138.06203
- [7] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo 17 (1970), 467-517. Zbl0212.46101
- [8] Yu. F. Korobeĭnik and S. N. Melikhov, A continuous linear right inverse for a representation operator, and conformal mappings, Russian Acad. Sci. Dokl. Math. 45 (1992), 428-431.
- [9] S. Lang, Complex Analysis, Springer, New York, 1985. Zbl0562.30001
- [10] M. Langenbruch and S. Momm, Complemented submodules in weighted spaces of analytic functions, Math. Nachr. 157 (1992), 263-276. Zbl0787.46034
- [11] B. Ya. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, R.I., 1980.
- [12] R. Meise, Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals, J. Reine Angew. Math. 363 (1985), 59-95. Zbl0574.46043
- [13] R. Meise, Sequence space representations for zero-solutions of convolution equations on ultradifferentiable functions of Roumieu type, Studia Math. 92 (1989), 211-230. Zbl0702.46024
- [14] R. Meise, B. A. Taylor and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729-756. Zbl0637.46037
- [15] R. Meise and D. Vogt, Characterization of convolution operators on spaces of -functions admitting a continuous linear right inverse, Math. Ann. 279 (1987), 141-155. Zbl0607.42011
- [16] R. Meise and D. Vogt, Einführung in die Funktionalanalysis, Braunschweig, Wiesbaden, 1992.
- [17] T. Meyer, Die Fourier-Laplace-Transformation quasianalytischer Funktionale und ihre Anwendung auf Faltungsoperatoren, Diplomarbeit, Düsseldorf, 1989.
- [18] T. Meyer, Surjektivität von Faltungsoperatoren auf Räumen ultradifferenzierbarer Funktionen vom Roumieu Typ, Dissertation, Düsseldorf, 1992.
- [19] S. Momm, Partial differential operators of infinite order with constant coefficients on the space of analytic functions on the polydisc, Studia Math. 96 (1990), 51-71. Zbl0725.35111
- [20] S. Momm, Closed principal ideals in nonradial Hörmander algebras, Arch. Math. (Basel) 58 (1992), 47-55. Zbl0804.46066
- [21] S. Momm, Convex univalent functions and continuous linear right inverses, J. Funct. Anal. 103 (1992), 85-103. Zbl0771.46016
- [22] S. Momm, Convolution equations on the analytic functions on convex domains in the plane, Bull. Sci. Math., to appear. Zbl0819.46039
- [23] M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z., to appear.
- [24] K. Schwerdtfeger, Faltungsoperatoren auf Räumen holomorpher und beliebig oft differenzierbarer Funktionen, Dissertation, Düsseldorf, 1982. Zbl0536.46014
- [25] B. A. Taylor, Linear extension operators for entire functions, Michigan Math. J. 29 (1982), 185-197. Zbl0471.30014
- [26] D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301. Zbl0512.46003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.