The space of real-analytic functions has no basis

Paweł Domański; Dietmar Vogt

Studia Mathematica (2000)

  • Volume: 142, Issue: 2, page 187-200
  • ISSN: 0039-3223

Abstract

top
Let Ω be an open connected subset of d . We show that the space A(Ω) of real-analytic functions on Ω has no (Schauder) basis. One of the crucial steps is to show that all metrizable complemented subspaces of A(Ω) are finite-dimensional.

How to cite

top

Domański, Paweł, and Vogt, Dietmar. "The space of real-analytic functions has no basis." Studia Mathematica 142.2 (2000): 187-200. <http://eudml.org/doc/216797>.

@article{Domański2000,
abstract = {Let Ω be an open connected subset of $ℝ^d$. We show that the space A(Ω) of real-analytic functions on Ω has no (Schauder) basis. One of the crucial steps is to show that all metrizable complemented subspaces of A(Ω) are finite-dimensional.},
author = {Domański, Paweł, Vogt, Dietmar},
journal = {Studia Mathematica},
keywords = {LB-space; Fréchet space; Schauder basis; Köthe sequence space; complemented subspace; space of real-analytic functions; metrizable complemented subspaces; PLN-space; LN-space; LB-spaces; nuclear linking maps; Schauder bases; ultrabornological PLN-space; property ; property (DN); complemented Fréchet subspace},
language = {eng},
number = {2},
pages = {187-200},
title = {The space of real-analytic functions has no basis},
url = {http://eudml.org/doc/216797},
volume = {142},
year = {2000},
}

TY - JOUR
AU - Domański, Paweł
AU - Vogt, Dietmar
TI - The space of real-analytic functions has no basis
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 2
SP - 187
EP - 200
AB - Let Ω be an open connected subset of $ℝ^d$. We show that the space A(Ω) of real-analytic functions on Ω has no (Schauder) basis. One of the crucial steps is to show that all metrizable complemented subspaces of A(Ω) are finite-dimensional.
LA - eng
KW - LB-space; Fréchet space; Schauder basis; Köthe sequence space; complemented subspace; space of real-analytic functions; metrizable complemented subspaces; PLN-space; LN-space; LB-spaces; nuclear linking maps; Schauder bases; ultrabornological PLN-space; property ; property (DN); complemented Fréchet subspace
UR - http://eudml.org/doc/216797
ER -

References

top
  1. [1] S. Banach, eorja operacyj, tom I. Operacje liniowe [Theory of operators, vol. I. Linear operators], Kasa Mianowskiego, Warszawa, 1931 (in Polish). 
  2. [2] S. Banach, Théorie des opérations linéaires, Monografie Mat. 1, Warszawa, 1932. 
  3. [3] C. Bessaga, A nuclear Fréchet space without basis I. Variation on a theme of Djakov and Mitiagin, Bull. Acad. Polon. Sci. 24 (1976), 471-473. Zbl0358.46001
  4. [4] J. Bonet and P. Domański, Real analytic curves in Fréchet spaces and their duals, Monatsh. Math. 126 (1998), 13-36. Zbl0918.46034
  5. [5] J. Bonet and P. Domański, Parameter dependence of solutions of partial differential equations in spaces of real analytic functions, Proc. Amer. Math. Soc., to appear. Zbl0959.35016
  6. [6] P. B. Djakov and B. S. Mityagin, Modified construction of a nuclear Fréchet space without a basis, J. Funct. Anal. 23 (1976), 415-423. 
  7. [7] P. Domański and D. Vogt, A splitting theory for the space of distributions, Studia Math. 140 (2000), 57-77. Zbl0973.46067
  8. [8] E. Dubinsky, Nuclear Fréchet spaces without the bounded approximation property, ibid. 71 (1981), 85-105. Zbl0482.46003
  9. [9] P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), 309-317. Zbl0267.46012
  10. [10] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955). 
  11. [11] L. Hörmander, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math. 21 (1973), 151-182. Zbl0282.35015
  12. [12] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981. 
  13. [13] M. Klimek, Pluripotential Theory, Clarendon Press, Oxford, 1991. 
  14. [14] S. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982. Zbl0471.32008
  15. [15] S. Krantz and H. R. Parks, A Primer of Real Analytic Functions, Birkhäuser, Basel, 1992. Zbl0767.26001
  16. [16] A. Kriegl and P. W. Michor, The convenient setting for real analytic mappings, Acta Math. 165 (1990), 105-159. Zbl0738.46024
  17. [17] A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, Amer. Math. Soc., Providence, 1997. Zbl0889.58001
  18. [18] M. Langenbruch, Continuous linear right inverses for convolution operators in spaces of real analytic functions, Studia Math. 110 (1994), 65-82. Zbl0824.35147
  19. [19] M. Langenbruch, Hyperfunction fundamental solutions of surjective convolution operators on real analytic functions, J. Funct. Anal. 131 (1995), 78-93. Zbl0841.46025
  20. [20] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol. I, Springer, Berlin, 1977. Zbl0362.46013
  21. [21] A. Martineau, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Anal. Math. 11 (1963), 1-164. Zbl0124.31804
  22. [22] A. Martineau, Sur la topologie des espaces de fonctions holomorphes, Math. Ann. 163 (1966), 62-88. Zbl0138.38101
  23. [23] R. D. Mauldin (ed.), The Scottish Book, Birkhäuser, Boston, 1981. Zbl0485.01013
  24. [24] R. Meise and D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997. Zbl0924.46002
  25. [25] B. S. Mityagin and G. M. Henkin, Linear problems of complex analysis, Uspekhi Mat. Nauk. 26 (1971), no. 4, 93-152 (in Russian); English transl.: Russian Math. Surveys 26 (1971), no. 4, 99-164. 
  26. [26] B. S. Mityagin et N. M. Zobin, Contre-exemple à l'existence d'une base dans un espace de Fréchet nucléaire, C. R. Acad. Sci. Paris Sér. A 279 (1974), 255-258, 325-327. Zbl0312.46016
  27. [27] V. B. Moscatelli, Fréchet space without continuous norms and without bases, Bull. London Math. Soc. 12 (1980), 63-66. Zbl0407.46002
  28. [28] V. P. Palamodov, Functor of projective limit in the category of topological vector spaces, Mat. Sb. 75 (1968), 567-603 (in Russian); English transl.: Math. USSR-Sb. 4 (1969), 529-559. Zbl0175.41801
  29. [29] V. P. Palamodov, Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26 (1971), no. 1, 3-66 (in Russian); English transl.: Russian Math. Surveys 26 (1971), no. 1, 1-64. 
  30. [30] A. Pełczyński and C. Bessaga, Some aspects of the present theory of Banach spaces, in: S. Banach, Oeuvres, Vol. II, PWN, Warszawa, 1979, 222-302. 
  31. [31] A. Pietsch, Nuclear Locally Convex Spaces, Akademie-Verlag, Berlin, 1972. 
  32. [32] A. Szankowski, B(H) does not have the approximation property, Acta Math. 147 (1981), 89-108. Zbl0486.46012
  33. [33] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math. 71 (1982), 251-270. Zbl0539.46009
  34. [34] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200. 
  35. [35] D. Vogt, An example of a nuclear Fréchet space without the bounded approximation property, Math. Z. 182 (1983), 265-267. Zbl0488.46002
  36. [36] D. Vogt, Lectures on projective spectra of DF-spaces, seminar lectures, AG Funktionalanalysis, Düsseldorf/Wuppertal, 1987. 
  37. [37] D. Vogt, Topics on projective spectra of LB-spaces, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), Kluwer, Dordrecht, 1989, 11-27. 
  38. [38] J. Wengenroth, Acyclic inductive spectra of Fréchet spaces, Studia Math. 120 (1996), 247-258. Zbl0863.46002
  39. [39] P. Wojtaszczyk, The Franklin system is an unconditional basis in H 1 , Ark. Mat. 20 (1982), 293-300. Zbl0534.46038
  40. [40] V. P. Zaharjuta, Spaces of analytic functions and complex potential theory, in: Linear Topological Spaces and Complex Analysis 1, A. Aytuna (ed.), METU- TÜBİTAK, Ankara, 1994, 74-146. 
  41. [41] V. P. Zaharjuta, Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, I, II, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 19 (1974), 133-157; 21 (1974), 65-83 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.