Complex Unconditional Metric Approximation Property for C Λ ( ) spaces

Daniel Li

Studia Mathematica (1996)

  • Volume: 121, Issue: 3, page 231-247
  • ISSN: 0039-3223

Abstract

top
We study the Complex Unconditional Metric Approximation Property for translation invariant spaces C Λ ( ) of continuous functions on the circle group. We show that although some “tiny” (Sidon) sets do not have this property, there are “big” sets Λ for which C Λ ( ) has (ℂ-UMAP); though these sets are such that L Λ ( ) contains functions which are not continuous, we show that there is a linear invariant lifting from these L Λ ( ) spaces into the Baire class 1 functions.

How to cite

top

Li, Daniel. "Complex Unconditional Metric Approximation Property for $C_{Λ}()$ spaces." Studia Mathematica 121.3 (1996): 231-247. <http://eudml.org/doc/216354>.

@article{Li1996,
abstract = {We study the Complex Unconditional Metric Approximation Property for translation invariant spaces $C_\{Λ\}()$ of continuous functions on the circle group. We show that although some “tiny” (Sidon) sets do not have this property, there are “big” sets Λ for which $C_\{Λ\}()$ has (ℂ-UMAP); though these sets are such that $L^\{∞\}_\{Λ\}()$ contains functions which are not continuous, we show that there is a linear invariant lifting from these $L^\{∞\}_\{Λ\}()$ spaces into the Baire class 1 functions.},
author = {Li, Daniel},
journal = {Studia Mathematica},
keywords = {Unconditional Metric Approximation Property; translation invariant spaces of continuous functions; Rosenthal set; Riesz set; linear invariant lifting; tiny (Sidon) sets; big sets; -UMAP; complex unconditional metric approximation property; translation invariant spaces; Baire class 1 functions},
language = {eng},
number = {3},
pages = {231-247},
title = {Complex Unconditional Metric Approximation Property for $C_\{Λ\}()$ spaces},
url = {http://eudml.org/doc/216354},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Li, Daniel
TI - Complex Unconditional Metric Approximation Property for $C_{Λ}()$ spaces
JO - Studia Mathematica
PY - 1996
VL - 121
IS - 3
SP - 231
EP - 247
AB - We study the Complex Unconditional Metric Approximation Property for translation invariant spaces $C_{Λ}()$ of continuous functions on the circle group. We show that although some “tiny” (Sidon) sets do not have this property, there are “big” sets Λ for which $C_{Λ}()$ has (ℂ-UMAP); though these sets are such that $L^{∞}_{Λ}()$ contains functions which are not continuous, we show that there is a linear invariant lifting from these $L^{∞}_{Λ}()$ spaces into the Baire class 1 functions.
LA - eng
KW - Unconditional Metric Approximation Property; translation invariant spaces of continuous functions; Rosenthal set; Riesz set; linear invariant lifting; tiny (Sidon) sets; big sets; -UMAP; complex unconditional metric approximation property; translation invariant spaces; Baire class 1 functions
UR - http://eudml.org/doc/216354
ER -

References

top
  1. [1] G. F. Bachelis and S. E. Ebenstein, On Λ(p) sets, Pacific J. Math. 54 (1974), 35-38. Zbl0304.43013
  2. [2] D. L. Cartwright, R. B. Howlett and J. R. McMullen, Extreme values for the Sidon constant, Proc. Amer. Math. Soc. 81 (1981), 531-537. Zbl0461.43011
  3. [3] P. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces, P. F. X. Müller and W. Schachermayer (eds)., London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 49-63. Zbl0743.41027
  4. [4] G. Godefroy, On Riesz subsets of abelian discrete groups, Israel J. Math. 61 (1988), 301-331. Zbl0661.43003
  5. [5] G. Godefroy and N. J. Kalton, Commuting approximation properties, preprint. 
  6. [6] G. Godefroy, N. J. Kalton and D. Li, On subspaces of L 1 which embed into 1 , J. Reine Angew. Math. 471 (1996), 43-75. 
  7. [7] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. Zbl0814.46012
  8. [8] G. Godefroy and D. Li, Some natural families of M-ideals, Math. Scand. 66 (1990), 249-263. Zbl0687.46010
  9. [9] G. Godefroy and F. Lust-Piquard, Some applications of geometry of Banach spaces to harmonic analysis, Colloq. Math. 60/61 (1990), 443-456. Zbl0759.46019
  10. [10] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1960. Zbl0086.25803
  11. [11] S. Hartman, Some problems and remarks on relative multipliers, Colloq. Math. 54 (1987), 103-111. Zbl0645.43004
  12. [12] N. Hindman, On density, translates, and pairwise sums of integers, J. Combin. Theory Ser. A 33 (1982), 147-157. Zbl0496.10036
  13. [13] M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L p , Studia Math. 21 (1962), 161-176. 
  14. [14] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. Zbl0266.47038
  15. [15] D. Li, On Hilbert sets and C Λ ( G ) -spaces with no subspace isomorphic to c 0 , Colloq. Math. 63 (1995), 67-77. Zbl0848.43006
  16. [16] F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris Sér. A 282 (1976), 833-835. Zbl0324.43007
  17. [17] F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans L ( Γ ) , Studia Math. 69 (1981), 191-225. Zbl0476.43001
  18. [18] Y. Meyer, Endomorphismes des idéaux fermés de L 1 ( G ) , classes de Hardy et séries de Fourier lacunaires, Ann. Sci. Ecole Norm. Sup. (4) 1 (1968), 499-580. Zbl0169.18001
  19. [19] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, 1972. Zbl0267.43001
  20. [20] A. Pełczyński, On commensurate sequences of characters, Proc. Amer. Math. Soc. 104 (1988), 525-531. Zbl0693.46044
  21. [21] A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91-108. Zbl0221.46014
  22. [22] G. Pisier, Bases, suites lacunaires dans les espaces L p d’après Kadec et Pełczyński, Sém. Maurey-Schwartz, exposé 18, Ecole Polytechnique, Paris, 1973. 
  23. [23] G. Pisier, Les inégalités de Khintchine-Kahane d'après C. Borell, Sém. Géométrie des Espaces de Banach 1977-1978, exposé VII, Ecole Polytechnique, Paris. Zbl0388.60013
  24. [24] H. P. Rosenthal, On trigonometric series associated with weak* closed subspaces of continuous functions, J. Math. Mech. 17 (1967), 485-490. Zbl0194.16703
  25. [25] W. Rudin, Trigonometric series with gaps, ibid. 9 (1960), 203-227. Zbl0091.05802
  26. [26] W. Rudin, L p -isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228. 

NotesEmbed ?

top

You must be logged in to post comments.