Complex Unconditional Metric Approximation Property for C Λ ( ) spaces

Daniel Li

Studia Mathematica (1996)

  • Volume: 121, Issue: 3, page 231-247
  • ISSN: 0039-3223

Abstract

top
We study the Complex Unconditional Metric Approximation Property for translation invariant spaces C Λ ( ) of continuous functions on the circle group. We show that although some “tiny” (Sidon) sets do not have this property, there are “big” sets Λ for which C Λ ( ) has (ℂ-UMAP); though these sets are such that L Λ ( ) contains functions which are not continuous, we show that there is a linear invariant lifting from these L Λ ( ) spaces into the Baire class 1 functions.

How to cite

top

Li, Daniel. "Complex Unconditional Metric Approximation Property for $C_{Λ}()$ spaces." Studia Mathematica 121.3 (1996): 231-247. <http://eudml.org/doc/216354>.

@article{Li1996,
abstract = {We study the Complex Unconditional Metric Approximation Property for translation invariant spaces $C_\{Λ\}()$ of continuous functions on the circle group. We show that although some “tiny” (Sidon) sets do not have this property, there are “big” sets Λ for which $C_\{Λ\}()$ has (ℂ-UMAP); though these sets are such that $L^\{∞\}_\{Λ\}()$ contains functions which are not continuous, we show that there is a linear invariant lifting from these $L^\{∞\}_\{Λ\}()$ spaces into the Baire class 1 functions.},
author = {Li, Daniel},
journal = {Studia Mathematica},
keywords = {Unconditional Metric Approximation Property; translation invariant spaces of continuous functions; Rosenthal set; Riesz set; linear invariant lifting; tiny (Sidon) sets; big sets; -UMAP; complex unconditional metric approximation property; translation invariant spaces; Baire class 1 functions},
language = {eng},
number = {3},
pages = {231-247},
title = {Complex Unconditional Metric Approximation Property for $C_\{Λ\}()$ spaces},
url = {http://eudml.org/doc/216354},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Li, Daniel
TI - Complex Unconditional Metric Approximation Property for $C_{Λ}()$ spaces
JO - Studia Mathematica
PY - 1996
VL - 121
IS - 3
SP - 231
EP - 247
AB - We study the Complex Unconditional Metric Approximation Property for translation invariant spaces $C_{Λ}()$ of continuous functions on the circle group. We show that although some “tiny” (Sidon) sets do not have this property, there are “big” sets Λ for which $C_{Λ}()$ has (ℂ-UMAP); though these sets are such that $L^{∞}_{Λ}()$ contains functions which are not continuous, we show that there is a linear invariant lifting from these $L^{∞}_{Λ}()$ spaces into the Baire class 1 functions.
LA - eng
KW - Unconditional Metric Approximation Property; translation invariant spaces of continuous functions; Rosenthal set; Riesz set; linear invariant lifting; tiny (Sidon) sets; big sets; -UMAP; complex unconditional metric approximation property; translation invariant spaces; Baire class 1 functions
UR - http://eudml.org/doc/216354
ER -

References

top
  1. [1] G. F. Bachelis and S. E. Ebenstein, On Λ(p) sets, Pacific J. Math. 54 (1974), 35-38. Zbl0304.43013
  2. [2] D. L. Cartwright, R. B. Howlett and J. R. McMullen, Extreme values for the Sidon constant, Proc. Amer. Math. Soc. 81 (1981), 531-537. Zbl0461.43011
  3. [3] P. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces, P. F. X. Müller and W. Schachermayer (eds)., London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 49-63. Zbl0743.41027
  4. [4] G. Godefroy, On Riesz subsets of abelian discrete groups, Israel J. Math. 61 (1988), 301-331. Zbl0661.43003
  5. [5] G. Godefroy and N. J. Kalton, Commuting approximation properties, preprint. 
  6. [6] G. Godefroy, N. J. Kalton and D. Li, On subspaces of L 1 which embed into 1 , J. Reine Angew. Math. 471 (1996), 43-75. 
  7. [7] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. Zbl0814.46012
  8. [8] G. Godefroy and D. Li, Some natural families of M-ideals, Math. Scand. 66 (1990), 249-263. Zbl0687.46010
  9. [9] G. Godefroy and F. Lust-Piquard, Some applications of geometry of Banach spaces to harmonic analysis, Colloq. Math. 60/61 (1990), 443-456. Zbl0759.46019
  10. [10] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1960. Zbl0086.25803
  11. [11] S. Hartman, Some problems and remarks on relative multipliers, Colloq. Math. 54 (1987), 103-111. Zbl0645.43004
  12. [12] N. Hindman, On density, translates, and pairwise sums of integers, J. Combin. Theory Ser. A 33 (1982), 147-157. Zbl0496.10036
  13. [13] M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L p , Studia Math. 21 (1962), 161-176. 
  14. [14] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. Zbl0266.47038
  15. [15] D. Li, On Hilbert sets and C Λ ( G ) -spaces with no subspace isomorphic to c 0 , Colloq. Math. 63 (1995), 67-77. Zbl0848.43006
  16. [16] F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris Sér. A 282 (1976), 833-835. Zbl0324.43007
  17. [17] F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans L ( Γ ) , Studia Math. 69 (1981), 191-225. Zbl0476.43001
  18. [18] Y. Meyer, Endomorphismes des idéaux fermés de L 1 ( G ) , classes de Hardy et séries de Fourier lacunaires, Ann. Sci. Ecole Norm. Sup. (4) 1 (1968), 499-580. Zbl0169.18001
  19. [19] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, 1972. Zbl0267.43001
  20. [20] A. Pełczyński, On commensurate sequences of characters, Proc. Amer. Math. Soc. 104 (1988), 525-531. Zbl0693.46044
  21. [21] A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91-108. Zbl0221.46014
  22. [22] G. Pisier, Bases, suites lacunaires dans les espaces L p d’après Kadec et Pełczyński, Sém. Maurey-Schwartz, exposé 18, Ecole Polytechnique, Paris, 1973. 
  23. [23] G. Pisier, Les inégalités de Khintchine-Kahane d'après C. Borell, Sém. Géométrie des Espaces de Banach 1977-1978, exposé VII, Ecole Polytechnique, Paris. Zbl0388.60013
  24. [24] H. P. Rosenthal, On trigonometric series associated with weak* closed subspaces of continuous functions, J. Math. Mech. 17 (1967), 485-490. Zbl0194.16703
  25. [25] W. Rudin, Trigonometric series with gaps, ibid. 9 (1960), 203-227. Zbl0091.05802
  26. [26] W. Rudin, L p -isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.