Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves
Studia Mathematica (1997)
- Volume: 125, Issue: 1, page 83-96
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBaran, M., and Pleśniak, W.. "Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves." Studia Mathematica 125.1 (1997): 83-96. <http://eudml.org/doc/216424>.
@article{Baran1997,
abstract = {We show that in the class of compact, piecewise $C^1$ curves K in $ℝ^n$, the semialgebraic curves are exactly those which admit a Bernstein (or a van der Corput-Schaake) type inequality for the derivatives of (the traces of) polynomials on K.},
author = {Baran, M., Pleśniak, W.},
journal = {Studia Mathematica},
keywords = {Bernstein and van der Corput-Schaake type inequalities; semialgebraic curves; algebraic manifolds; pluricomplex Green function; Lipschitz functions},
language = {eng},
number = {1},
pages = {83-96},
title = {Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves},
url = {http://eudml.org/doc/216424},
volume = {125},
year = {1997},
}
TY - JOUR
AU - Baran, M.
AU - Pleśniak, W.
TI - Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 1
SP - 83
EP - 96
AB - We show that in the class of compact, piecewise $C^1$ curves K in $ℝ^n$, the semialgebraic curves are exactly those which admit a Bernstein (or a van der Corput-Schaake) type inequality for the derivatives of (the traces of) polynomials on K.
LA - eng
KW - Bernstein and van der Corput-Schaake type inequalities; semialgebraic curves; algebraic manifolds; pluricomplex Green function; Lipschitz functions
UR - http://eudml.org/doc/216424
ER -
References
top- [Ba1] M. Baran, Plurisubharmonic extremal function and complex foliations for the complement of convex sets in , Michigan Math. J. 39 (1992) 395-404.
- [Ba2] M. Baran, Complex equilibrium measure and Bernstein type theorems for compact sets in , Proc. Amer. Math. Soc. 123 (1995) 485-494. Zbl0813.32011
- [Ba3] M. Baran, Bernstein type theorems for compact sets in revisited, J. Approx. Theory 79 (1994) 190-198. Zbl0819.41013
- [Ba4] M. Baran, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994) 69-79. Zbl0824.41014
- [BaPl] M. Baran and W. Pleśniak, Markov’s exponent of compact sets in , Proc. Amer. Math. Soc. 123 (9) (1995) 2785-2791. Zbl0841.41011
- [BeRi] R. Benedetti and J.-J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990.
- [Bern] S. N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mém. Acad. Roy. Belg. 4 (2) (1912) 1-103.
- [BLMT] L. Bos, N. Levenberg, P. Milman and B. A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of , Indiana Univ. Math. J. 44 (1995) 115-138. Zbl0824.41015
- [BLT] L. Bos, N. Levenberg and B. A. Taylor, Characterization of smooth, compact algebraic curves in , in: Topics in Complex Analysis, P. Jakóbczak and W. Pleśniak (eds.), Banach Center Publ. 31, Inst. Math., Polish Acad. Sci., Warszawa, 1995, 125-134. Zbl0834.41012
- [BM1] L. Bos and P. Milman, On Markov and Sobolev type inequalities on compact subsets in , in: Topics in Polynomials in One and Several Variables and Their Applications, T. Rassias et al. (eds.), World Scientific, Singapore, 1992, 81-100.
- [BM2] L. Bos and P. Milman, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains, Geom. Funct. Anal. 5 (1995) 853-923. Zbl0848.46022
- [Chir] E. M. Chirka, Complex Analytic Sets, Kluwer Acad. Publ., Dordrecht, 1989.
- [CS1] J. G. van der Corput und G. Schaake, Ungleichungen für Polynome und trigonometrische Polynome, Compositio Math. 2 (1935) 321-361.
- [CS2] J. G. van der Corput und G. Schaake, Berichtigung zu: Ungleichungen für Polynome und trigonometrische Polynome, ibid. 3 (1936) 128. Zbl0013.10803
- [FeNa] C. Fefferman and R. Narasimhan, Bernstein's inequality on algebraic curves, Ann. Inst. Fourier (Grenoble) 43 (1993) 1319-1348. Zbl0842.26013
- [Goe1] P. Goetgheluck, Inégalité de Markov dans les ensembles effilés, J. Approx. Theory 30 (1980) 149-154. Zbl0457.41015
- [Goe2] P. Goetgheluck, Polynomial inequalities on general subsets of , Colloq. Math. 57 (1989) 127-136. Zbl0698.26004
- [Gon] A. Goncharov, A compact set without Markov’s property but with an extension operator for -functions, Studia Math. 119 (1996) 27-35. Zbl0857.46013
- [Har] J. Harris, Algebraic Geometry, Springer, New York, 1992.
- [Hart] R. Hartshorne, Algebraic Geometry, Springer, New York, 1987.
- [Jon1] A. Jonsson, Markov's inequality on compact sets, in: Orthogonal Polynomials and Their Applications, C. Brezinski, L. Gori and A. Ronveaux (eds.), J. G. Bultzer AG, 1991, 309-313.
- [Jon2] A. Jonsson, Markov's inequality and zeros of orthogonal polynomials on fractal sets, J. Approx. Theory 78 (1994) 87-97. Zbl0918.41014
- [Jos] B. Josefson, On the equivalence between locally and globally polar sets for plurisubharmonic functions in , Ark. Mat. 16 (1978) 109-115. Zbl0383.31003
- [K] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991.
- [L] G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966. Zbl0153.38901
- [Ł] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991. Zbl0747.32001
- [MiRa] G. V. Milanović and T. M. Rassias, On Markov-Duffin-Schaeffer inequalities, J. Nat. Geometry 5 (1994) 29-41. Zbl0788.26011
- [PP1] W. Pawłucki and W. Pleśniak, Markov’s inequality and functions on sets with polynomial cusps, Math. Ann. 275 (1986) 467-480. Zbl0579.32020
- [PP2] W. Pawłucki and W. Pleśniak, Extension of functions from sets with polynomial cusps, Studia Math. 88 (1988) 279-287. Zbl0778.26010
- [Pl1] W. Pleśniak, On superposition of quasianalytic functions, Ann. Polon. Math. 26 (1972) 73-84. Zbl0207.08101
- [Pl2] W. Pleśniak, Remarques sur une généralisation de l'inégalité de S. Bernstein, C. R. Acad. Sci. Paris Sér. A 284 (1977) 1211-1213. Zbl0357.32010
- [Pl3] W. Pleśniak, Markov’s inequality and the existence of an extension operator for functions, J. Approx. Theory 61 (1990) 106-117.
- [Sa] A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR-Izv. 20 (1983), 493-502. Zbl0582.32023
- [Si1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. Zbl0111.08102
- [Si2] J. Siciak, Extremal plurisubharmonic functions in , Ann. Polon. Math. 39 (1981) 175-211. Zbl0477.32018
- [Si3] J. Siciak, Rapid polynomial approximation on compact sets in , Univ. Iagell. Acta Math. 30 (1993) 145-154. Zbl0838.32007
- [Sin] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin, 1970.
- [Z] A. Zeriahi, Inégalités de Markov et développement en série de polynômes orthogonaux des fonctions et , in: Proc. Special Year of Complex Analysis of the Mittag-Leffler Institute 1987-88, J. F. Fornaess (ed.), Princeton Univ. Press, Princeton, N.J., 1993, 693-701.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.