Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves

M. Baran; W. Pleśniak

Studia Mathematica (1997)

  • Volume: 125, Issue: 1, page 83-96
  • ISSN: 0039-3223

Abstract

top
We show that in the class of compact, piecewise C 1 curves K in n , the semialgebraic curves are exactly those which admit a Bernstein (or a van der Corput-Schaake) type inequality for the derivatives of (the traces of) polynomials on K.

How to cite

top

Baran, M., and Pleśniak, W.. "Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves." Studia Mathematica 125.1 (1997): 83-96. <http://eudml.org/doc/216424>.

@article{Baran1997,
abstract = {We show that in the class of compact, piecewise $C^1$ curves K in $ℝ^n$, the semialgebraic curves are exactly those which admit a Bernstein (or a van der Corput-Schaake) type inequality for the derivatives of (the traces of) polynomials on K.},
author = {Baran, M., Pleśniak, W.},
journal = {Studia Mathematica},
keywords = {Bernstein and van der Corput-Schaake type inequalities; semialgebraic curves; algebraic manifolds; pluricomplex Green function; Lipschitz functions},
language = {eng},
number = {1},
pages = {83-96},
title = {Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves},
url = {http://eudml.org/doc/216424},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Baran, M.
AU - Pleśniak, W.
TI - Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 1
SP - 83
EP - 96
AB - We show that in the class of compact, piecewise $C^1$ curves K in $ℝ^n$, the semialgebraic curves are exactly those which admit a Bernstein (or a van der Corput-Schaake) type inequality for the derivatives of (the traces of) polynomials on K.
LA - eng
KW - Bernstein and van der Corput-Schaake type inequalities; semialgebraic curves; algebraic manifolds; pluricomplex Green function; Lipschitz functions
UR - http://eudml.org/doc/216424
ER -

References

top
  1. [Ba1] M. Baran, Plurisubharmonic extremal function and complex foliations for the complement of convex sets in n , Michigan Math. J. 39 (1992) 395-404. 
  2. [Ba2] M. Baran, Complex equilibrium measure and Bernstein type theorems for compact sets in n , Proc. Amer. Math. Soc. 123 (1995) 485-494. Zbl0813.32011
  3. [Ba3] M. Baran, Bernstein type theorems for compact sets in n revisited, J. Approx. Theory 79 (1994) 190-198. Zbl0819.41013
  4. [Ba4] M. Baran, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994) 69-79. Zbl0824.41014
  5. [BaPl] M. Baran and W. Pleśniak, Markov’s exponent of compact sets in n , Proc. Amer. Math. Soc. 123 (9) (1995) 2785-2791. Zbl0841.41011
  6. [BeRi] R. Benedetti and J.-J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990. 
  7. [Bern] S. N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mém. Acad. Roy. Belg. 4 (2) (1912) 1-103. 
  8. [BLMT] L. Bos, N. Levenberg, P. Milman and B. A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of N , Indiana Univ. Math. J. 44 (1995) 115-138. Zbl0824.41015
  9. [BLT] L. Bos, N. Levenberg and B. A. Taylor, Characterization of smooth, compact algebraic curves in 2 , in: Topics in Complex Analysis, P. Jakóbczak and W. Pleśniak (eds.), Banach Center Publ. 31, Inst. Math., Polish Acad. Sci., Warszawa, 1995, 125-134. Zbl0834.41012
  10. [BM1] L. Bos and P. Milman, On Markov and Sobolev type inequalities on compact subsets in n , in: Topics in Polynomials in One and Several Variables and Their Applications, T. Rassias et al. (eds.), World Scientific, Singapore, 1992, 81-100. 
  11. [BM2] L. Bos and P. Milman, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains, Geom. Funct. Anal. 5 (1995) 853-923. Zbl0848.46022
  12. [Chir] E. M. Chirka, Complex Analytic Sets, Kluwer Acad. Publ., Dordrecht, 1989. 
  13. [CS1] J. G. van der Corput und G. Schaake, Ungleichungen für Polynome und trigonometrische Polynome, Compositio Math. 2 (1935) 321-361. 
  14. [CS2] J. G. van der Corput und G. Schaake, Berichtigung zu: Ungleichungen für Polynome und trigonometrische Polynome, ibid. 3 (1936) 128. Zbl0013.10803
  15. [FeNa] C. Fefferman and R. Narasimhan, Bernstein's inequality on algebraic curves, Ann. Inst. Fourier (Grenoble) 43 (1993) 1319-1348. Zbl0842.26013
  16. [Goe1] P. Goetgheluck, Inégalité de Markov dans les ensembles effilés, J. Approx. Theory 30 (1980) 149-154. Zbl0457.41015
  17. [Goe2] P. Goetgheluck, Polynomial inequalities on general subsets of N , Colloq. Math. 57 (1989) 127-136. Zbl0698.26004
  18. [Gon] A. Goncharov, A compact set without Markov’s property but with an extension operator for C -functions, Studia Math. 119 (1996) 27-35. Zbl0857.46013
  19. [Har] J. Harris, Algebraic Geometry, Springer, New York, 1992. 
  20. [Hart] R. Hartshorne, Algebraic Geometry, Springer, New York, 1987. 
  21. [Jon1] A. Jonsson, Markov's inequality on compact sets, in: Orthogonal Polynomials and Their Applications, C. Brezinski, L. Gori and A. Ronveaux (eds.), J. G. Bultzer AG, 1991, 309-313. 
  22. [Jon2] A. Jonsson, Markov's inequality and zeros of orthogonal polynomials on fractal sets, J. Approx. Theory 78 (1994) 87-97. Zbl0918.41014
  23. [Jos] B. Josefson, On the equivalence between locally and globally polar sets for plurisubharmonic functions in n , Ark. Mat. 16 (1978) 109-115. Zbl0383.31003
  24. [K] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991. 
  25. [L] G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966. Zbl0153.38901
  26. [Ł] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991. Zbl0747.32001
  27. [MiRa] G. V. Milanović and T. M. Rassias, On Markov-Duffin-Schaeffer inequalities, J. Nat. Geometry 5 (1994) 29-41. Zbl0788.26011
  28. [PP1] W. Pawłucki and W. Pleśniak, Markov’s inequality and C functions on sets with polynomial cusps, Math. Ann. 275 (1986) 467-480. Zbl0579.32020
  29. [PP2] W. Pawłucki and W. Pleśniak, Extension of C functions from sets with polynomial cusps, Studia Math. 88 (1988) 279-287. Zbl0778.26010
  30. [Pl1] W. Pleśniak, On superposition of quasianalytic functions, Ann. Polon. Math. 26 (1972) 73-84. Zbl0207.08101
  31. [Pl2] W. Pleśniak, Remarques sur une généralisation de l'inégalité de S. Bernstein, C. R. Acad. Sci. Paris Sér. A 284 (1977) 1211-1213. Zbl0357.32010
  32. [Pl3] W. Pleśniak, Markov’s inequality and the existence of an extension operator for C functions, J. Approx. Theory 61 (1990) 106-117. 
  33. [Sa] A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR-Izv. 20 (1983), 493-502. Zbl0582.32023
  34. [Si1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. Zbl0111.08102
  35. [Si2] J. Siciak, Extremal plurisubharmonic functions in n , Ann. Polon. Math. 39 (1981) 175-211. Zbl0477.32018
  36. [Si3] J. Siciak, Rapid polynomial approximation on compact sets in n , Univ. Iagell. Acta Math. 30 (1993) 145-154. Zbl0838.32007
  37. [Sin] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer, Berlin, 1970. 
  38. [Z] A. Zeriahi, Inégalités de Markov et développement en série de polynômes orthogonaux des fonctions C et A , in: Proc. Special Year of Complex Analysis of the Mittag-Leffler Institute 1987-88, J. F. Fornaess (ed.), Princeton Univ. Press, Princeton, N.J., 1993, 693-701. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.