A compact set without Markov’s property but with an extension operator for C -functions

Alexander Goncharov

Studia Mathematica (1996)

  • Volume: 119, Issue: 1, page 27-35
  • ISSN: 0039-3223

Abstract

top
We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator L : ( K ) C [ 0 , 1 ] . At the same time, Markov’s inequality is not satisfied for certain polynomials on K.

How to cite

top

Goncharov, Alexander. "A compact set without Markov’s property but with an extension operator for $C^∞$-functions." Studia Mathematica 119.1 (1996): 27-35. <http://eudml.org/doc/216284>.

@article{Goncharov1996,
abstract = {We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator $L: ℇ(K) → C^\{∞\}[0,1]$. At the same time, Markov’s inequality is not satisfied for certain polynomials on K.},
author = {Goncharov, Alexander},
journal = {Studia Mathematica},
keywords = {compact set; Whitney functions; rapidly decreasing sequences; linear continuous extension operator; Markov's inequality},
language = {eng},
number = {1},
pages = {27-35},
title = {A compact set without Markov’s property but with an extension operator for $C^∞$-functions},
url = {http://eudml.org/doc/216284},
volume = {119},
year = {1996},
}

TY - JOUR
AU - Goncharov, Alexander
TI - A compact set without Markov’s property but with an extension operator for $C^∞$-functions
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 1
SP - 27
EP - 35
AB - We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator $L: ℇ(K) → C^{∞}[0,1]$. At the same time, Markov’s inequality is not satisfied for certain polynomials on K.
LA - eng
KW - compact set; Whitney functions; rapidly decreasing sequences; linear continuous extension operator; Markov's inequality
UR - http://eudml.org/doc/216284
ER -

References

top
  1. [1] A. Aytuna, P. Djakov, A. Goncharov, T. Terzioğlu and V. Zahariuta, Some open problems in the theory of locally convex spaces, in: Linear Topological Spaces and Complex Analysis 1, METU-TÜBİTAK, 1994, 147-165. Zbl0859.46002
  2. [2] L. P. Bos and P. D. Milman, On Markov and Sobolev type inequalities on compact sets in n , in: Topics in Polynomials of One and Several Variables and Their Applications, Th. M. Rassias, H. M. Srivastava and A. Yanushauskas (eds.), World Sci., 1993, 81-100. Zbl0865.46018
  3. [3] W. Pawłucki and W. Pleśniak, Extension of C functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. Zbl0778.26010
  4. [4] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. (Rozprawy Mat.) 147 (1977). Zbl0359.32003
  5. [5] W. Pleśniak, Markov’s inequality and the existence of an extension operator for C functions, J. Approx. Theory 61 (1990), 106-117. 
  6. [6] M. Tidten, Fortsetzungen von C -Funktionen, welche auf einer abgeschlossenen Menge in n definiert sind, Manuscripta Math. 27 (1979), 291-312. 
  7. [7] M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu ℇ(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81. 
  8. [8] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon, Oxford, 1963. Zbl0117.29001
  9. [9] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. Zbl0337.46015
  10. [10] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. I. Zapata (ed.), Lecture Notes in Pure and Appl. Math. 83, Dekker, 1983, 405-443. 
  11. [11] V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian). 
  12. [12] M. Zerner, Développement en séries de polynômes orthonormaux des fonctions indéfiniment différentiables, C. R. Acad. Sci. Paris 268 (1969), 218-220. Zbl0189.14601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.