A compact set without Markov’s property but with an extension operator for -functions
Studia Mathematica (1996)
- Volume: 119, Issue: 1, page 27-35
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGoncharov, Alexander. "A compact set without Markov’s property but with an extension operator for $C^∞$-functions." Studia Mathematica 119.1 (1996): 27-35. <http://eudml.org/doc/216284>.
@article{Goncharov1996,
abstract = {We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator $L: ℇ(K) → C^\{∞\}[0,1]$. At the same time, Markov’s inequality is not satisfied for certain polynomials on K.},
author = {Goncharov, Alexander},
journal = {Studia Mathematica},
keywords = {compact set; Whitney functions; rapidly decreasing sequences; linear continuous extension operator; Markov's inequality},
language = {eng},
number = {1},
pages = {27-35},
title = {A compact set without Markov’s property but with an extension operator for $C^∞$-functions},
url = {http://eudml.org/doc/216284},
volume = {119},
year = {1996},
}
TY - JOUR
AU - Goncharov, Alexander
TI - A compact set without Markov’s property but with an extension operator for $C^∞$-functions
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 1
SP - 27
EP - 35
AB - We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator $L: ℇ(K) → C^{∞}[0,1]$. At the same time, Markov’s inequality is not satisfied for certain polynomials on K.
LA - eng
KW - compact set; Whitney functions; rapidly decreasing sequences; linear continuous extension operator; Markov's inequality
UR - http://eudml.org/doc/216284
ER -
References
top- [1] A. Aytuna, P. Djakov, A. Goncharov, T. Terzioğlu and V. Zahariuta, Some open problems in the theory of locally convex spaces, in: Linear Topological Spaces and Complex Analysis 1, METU-TÜBİTAK, 1994, 147-165. Zbl0859.46002
- [2] L. P. Bos and P. D. Milman, On Markov and Sobolev type inequalities on compact sets in , in: Topics in Polynomials of One and Several Variables and Their Applications, Th. M. Rassias, H. M. Srivastava and A. Yanushauskas (eds.), World Sci., 1993, 81-100. Zbl0865.46018
- [3] W. Pawłucki and W. Pleśniak, Extension of functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. Zbl0778.26010
- [4] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. (Rozprawy Mat.) 147 (1977). Zbl0359.32003
- [5] W. Pleśniak, Markov’s inequality and the existence of an extension operator for functions, J. Approx. Theory 61 (1990), 106-117.
- [6] M. Tidten, Fortsetzungen von -Funktionen, welche auf einer abgeschlossenen Menge in definiert sind, Manuscripta Math. 27 (1979), 291-312.
- [7] M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu ℇ(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81.
- [8] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon, Oxford, 1963. Zbl0117.29001
- [9] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. Zbl0337.46015
- [10] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. I. Zapata (ed.), Lecture Notes in Pure and Appl. Math. 83, Dekker, 1983, 405-443.
- [11] V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian).
- [12] M. Zerner, Développement en séries de polynômes orthonormaux des fonctions indéfiniment différentiables, C. R. Acad. Sci. Paris 268 (1969), 218-220. Zbl0189.14601
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.